Sindbad~EG File Manager
// Signal tapset
// Copyright (C) 2006 IBM Corp.
// Copyright (C) 2006 Intel Corporation.
// Copyright (C) 2008-2017 Red Hat, Inc.
//
// This file is part of systemtap, and is free software. You can
// redistribute it and/or modify it under the terms of the GNU General
// Public License (GPL); either version 2, or (at your option) any
// later version.
//
//
// <tapsetdescription>
// This family of probe points is used to probe signal activities.
// Since there are so many signals sent to processes at any given
// point, it is advisable to filter the information according to the
// requirements. For example, filter only for a particular signal
// (if sig==2) or for a particular process (if pid_name==stap).
// </tapsetdescription>
/**
* probe signal.send - Signal being sent to a process
* Arguments:
* @sig: The number of the signal
* @sig_name: A string representation of the signal
* @sig_pid: The PID of the process receiving the signal
* @pid_name: The name of the signal recipient
* @si_code: Indicates the signal type
* @task: A task handle to the signal recipient
* @sinfo: The address of siginfo struct
* @shared: Indicates whether the signal is shared by the thread group
* @send2queue: Indicates whether the signal is sent to an existing
* sigqueue (deprecated in SystemTap 2.1)
* @name: The name of the function used to send out the signal
*
* Context:
* The signal's sender.
*
*/
probe signal.send = __signal.send.signal_generate !,
__signal.send.send_sigqueue,
%( kernel_v > "2.6.25" %?
__signal.send.send_signal ?
%:
__signal.send.group_send_sig_info ?,
__signal.send.send_group_sigqueue ?,
__signal.send.specific_send_sig_info ?
%)
{
sig_name = _signal_name(sig)
sig_pid = task_pid(task)
pid_name = task_execname(task)
if (sinfo == 2) # 2 == SEND_SIG_FORCED
si_code ="SIGSTOP or SIGKILL"
else if (sinfo > 0)
si_code="SI_KERNEL (SIGFPE, SIGSEGV, SIGTRAP, SIGCHLD, SIGPOLL)"
else if (sinfo <= 0)
si_code="SI_USER or SI_TIMER or SI_ASYNCIO"
}
probe __signal.send.signal_generate = kernel.trace("signal_generate") ?
{
name = "signal_generate"
sig = $sig
task = $task
sinfo = $info
shared = (@choose_defined($group, 0) == 0) ? 0 : 1
%( systemtap_v <= "2.1" %?
send2queue = 0
%)
}
probe __signal.send.send_sigqueue = kernel.function("send_sigqueue")
{
name = "send_sigqueue"
task = @choose_defined($t, $p)
sig = @choose_defined($q->info->si_signo, $sig)
sinfo = @choose_defined($q->info, 0)
shared = 0
%( systemtap_v <= "2.1" %?
send2queue = 1
%)
}
probe __signal.send.send_signal =
kernel.function("__send_signal") !,
kernel.function("send_signal") ?
{
if (@defined($group)) {
name = "__send_signal"
shared = ($group == 0) ? 0 : 1
}
else {
name = "send_signal"
shared = 0
}
sig = $sig
task = $t
sinfo = $info
%( systemtap_v <= "2.1" %?
send2queue = 0
%)
}
probe __signal.send.group_send_sig_info =
kernel.function("__group_send_sig_info")
{
name = "__group_send_sig_info"
sig = $sig
task = $p
sinfo = $info
shared = 1
%( systemtap_v <= "2.1" %?
send2queue = 0
%)
}
probe __signal.send.send_group_sigqueue =
kernel.function("send_group_sigqueue") ?
{
name = "send_group_sigqueue"
sig = $sig
task = $p
sinfo = 0 # $q->info
shared = 1
%( systemtap_v <= "2.1" %?
send2queue = 1
%)
}
probe __signal.send.specific_send_sig_info =
kernel.function("specific_send_sig_info").call ?
{
name = "specific_send_sig_info"
sig = $sig
task = $t
sinfo = $info
shared = 0
%( systemtap_v <= "2.1" %?
send2queue = 0
%)
}
%( systemtap_v <= "2.1" %?
/**
* probe signal.send.return - Signal being sent to a process completed (deprecated in SystemTap 2.1)
* @retstr: The return value to either __group_send_sig_info, specific_send_sig_info, or send_sigqueue
* @shared: Indicates whether the sent signal is shared by the thread group.
* @send2queue: Indicates whether the sent signal was sent to an existing sigqueue
* @name: The name of the function used to send out the signal
*
* Context:
* The signal's sender. (correct?)
*
* Possible __group_send_sig_info and
* specific_send_sig_info return values are as follows;
*
* 0 -- The signal is successfully sent to a process,
* which means that, (1) the signal was ignored by the receiving process,
* (2) this is a non-RT signal and the system already has one queued, and
* (3) the signal was successfully added to the sigqueue of the receiving process.
*
* -EAGAIN -- The sigqueue of the receiving process is
* overflowing, the signal was RT, and the signal was sent by a user using something other
* than kill().
*
* Possible send_group_sigqueue and
* send_sigqueue return values are as follows;
*
* 0 -- The signal was either successfully added into the
* sigqueue of the receiving process, or a SI_TIMER entry is already
* queued (in which case, the overrun count will be simply incremented).
*
* 1 -- The signal was ignored by the receiving process.
*
* -1 -- (send_sigqueue only) The task was marked
* exiting, allowing * posix_timer_event to redirect it to the group
* leader.
*
*/
probe signal.send.return = __signal.send.send_sigqueue.return,
%( kernel_v > "2.6.25" %?
__signal.send.send_signal.return ?
%:
__signal.send.group_send_sig_info.return ?,
__signal.send.send_group_sigqueue.return ?,
__signal.send.specific_send_sig_info.return ?
%)
{
retstr = return_str(1, $return)
}
// - return 0 if the signal is either sucessfully added into the
// sigqueue of receiving process or a SI_TIMER entry is already
// queued so just increment the overrun count
//
// - return 1 if this signal is ignored by receiving process
//
// - return -1 if the task is marked exiting, so posix_timer_event
// can redirect it to the group leader
probe __signal.send.send_sigqueue.return =
kernel.function("send_sigqueue").return ?
{
name = "send_sigqueue"
shared = 0
send2queue = 1
}
probe __signal.send.send_signal.return =
kernel.function("__send_signal").return !,
kernel.function("send_signal").return ?
{
if (@defined(@entry($group))) {
name = "__send_signal"
shared = (@entry($group) == 0) ? 0 : 1
}
else {
name = "send_signal"
shared = 0
}
send2queue = 0
}
// Return values for "__group_send_sig_info" and "specific_send_sig_info"
//
// - return 0 if the signal is successfully sent to a process,
// which means the following:
// <1> the signal is ignored by receiving process
// <2> this is a non-RT signal and we already have one queued
// <3> the signal is successfully added into the sigqueue of
// receiving process
//
// - return -EAGAIN if the sigqueue is overflow the signal was RT
// and sent by user using something other than kill()
probe __signal.send.group_send_sig_info.return =
kernel.function("__group_send_sig_info").return
{
name = "__group_send_sig_info"
shared = 1
send2queue = 0
}
probe __signal.send.specific_send_sig_info.return =
kernel.function("specific_send_sig_info").return ?
{
name = "specific_send_sig_info"
shared = 0
send2queue = 0
}
// - return 0 if the signal is either successfully added into the
// sigqueue of receiving process or a SI_TIMER entry is already
// queued so just increment the overrun count
//
// - return 1 if this signal is ignored by receiving process
probe __signal.send.send_group_siggueue.return =
kernel.function("send_group_sigqueue").return ?
{
name = "send_group_sigqueue"
shared = 1
send2queue = 1
}
%)
/**
* probe signal.checkperm - Check being performed on a sent signal
* @sig: The number of the signal
* @sig_name: A string representation of the signal
* @sig_pid: The PID of the process receiving the signal
* @pid_name: Name of the process receiving the signal
* @si_code: Indicates the signal type
* @task: A task handle to the signal recipient
* @sinfo: The address of the siginfo structure
* @name: Name of the probe point
*/
probe signal.checkperm = kernel.function("check_kill_permission")
{
sig = $sig
task = $t
sinfo = $info
name = "checkperm"
sig_name = _signal_name($sig)
sig_pid = task_pid(task)
pid_name = task_execname(task)
if (sinfo == 2)
si_code ="SIGSTOP or SIGKILL"
else if (sinfo > 0)
si_code="SI_KERNEL (SIGFPE, SIGSEGV, SIGTRAP, SIGCHLD, SIGPOLL)"
else if (sinfo <= 0)
si_code="SI_USER or SI_TIMER or SI_ASYNCIO"
}
/**
* probe signal.checkperm.return - Check performed on a sent signal completed
* @name: Name of the probe point
* @retstr: Return value as a string
*/
probe signal.checkperm.return =
kernel.function("check_kill_permission").return ?
{
name = "checkperm"
retstr = return_str(1, $return)
}
/**
* probe signal.wakeup - Sleeping process being wakened for signal
* @sig_pid: The PID of the process to wake
* @pid_name: Name of the process to wake
* @resume: Indicates whether to wake up a task in a
* STOPPED or TRACED state
* @state_mask: A string representation indicating the mask
* of task states to wake. Possible values are
* TASK_INTERRUPTIBLE, TASK_STOPPED,
* TASK_TRACED, TASK_WAKEKILL, and TASK_INTERRUPTIBLE.
*/
probe __signal.wakeup.signal_wake_up_state
= kernel.function("signal_wake_up_state")
{
resume = ($state == 0) ? 0 : 1;
if ($state & @const("__TASK_STOPPED") != 0) {
state_mask .= " | TASK_STOPPED"
}
if ($state & @const("__TASK_TRACED") != 0) {
state_mask .= " | TASK_TRACED"
}
if ($state & @const("TASK_WAKEKILL") != 0) {
state_mask .= " | TASK_WAKEKILL"
}
state_mask = "TASK_INTERRUPTIBLE" . state_mask
}
probe __signal.wakeup.signal_wake_up = kernel.function("signal_wake_up")
{
resume = $resume
if (resume == 0) {
state_mask = "TASK_INTERRUPTIBLE"
} else {
state_mask = "TASK_INTERRUPTIBLE | TASK_STOPPED | TASK_TRACED"
}
}
probe signal.wakeup = __signal.wakeup.signal_wake_up_state !,
__signal.wakeup.signal_wake_up
{
name = "wakeup"
sig_pid = $t->pid
pid_name = kernel_string($t->comm)
}
/**
* probe signal.check_ignored - Checking to see signal is ignored
* @sig_pid: The PID of the process receiving the signal
* @pid_name: Name of the process receiving the signal
* @sig: The number of the signal
* @sig_name: A string representation of the signal
*/
probe signal.check_ignored = kernel.function("sig_ignored")
{
name = "check_ignored"
sig_pid = $t->pid
pid_name = kernel_string($t->comm)
sig = $sig
sig_name = _signal_name($sig)
}
/**
* probe signal.check_ignored.return - Check to see signal is ignored completed
* @name: Name of the probe point
* @retstr: Return value as a string
*/
/* On newer kernels, sig_ignored() is inline, so we can't do a return
* probe. So, instead we'll probe prepare_signal(), which is the only
* caller of sig_ignored(). */
probe __signal.check_ignored.sig_ignored.return =
kernel.function("sig_ignored").return
{
retstr = return_str(1, $return)
}
probe __signal.check_ignored.prepare_signal.return =
kernel.function("prepare_signal").return
{
/* The prepare_signal() function inverts the return value of
* sig_ignored(). */
retstr = return_str(1, !$return)
}
probe signal.check_ignored.return =
__signal.check_ignored.sig_ignored.return !,
__signal.check_ignored.prepare_signal.return
{
name = "check_ignored"
}
// probe signal.handle_stop
// For now, just comment it out since at the time handle_stop_signal()
// is called, it doesn't know whether current signal is STOP/COUNT.
// So the calling of handle_stop_signal() doesn't mean that the Kernel
// is now processing the STOP/COUNT signal
//
/*
probe signal.handle_stop = kernel.function("handle_stop_signal")
{
sig_pid = $p->pid
pid_name = kernel_string($p->comm)
sig_info = $sig
sig_name = _signal_name($sig)
}
*/
/**
* probe signal.force_segv - Forcing send of SIGSEGV
* @sig_pid: The PID of the process receiving the signal
* @pid_name: Name of the process receiving the signal
* @sig: The number of the signal
* @sig_name: A string representation of the signal
* @name: Name of the probe point
*/
probe signal.force_segv = _signal.force_segv.*
{
name = "force_segv"
}
probe _signal.force_segv.part1 = kernel.function("force_sigsegv")
{
sig_pid = $p->pid
pid_name = kernel_string($p->comm)
sig = $sig
sig_name = _signal_name($sig)
}
probe _signal.force_segv.part2 = kernel.function("force_sigsegv_info") ?
{
sig_pid = pid()
pid_name = execname()
sig = $sig
sig_name = _signal_name($sig)
}
/**
* probe signal.force_segv.return - Forcing send of SIGSEGV complete
* @name: Name of the probe point
* @retstr: Return value as a string
*/
probe signal.force_segv.return =
kernel.function("force_sigsegv").return,
kernel.function("force_sigsegv_info").return ?
{
name = "force_segv"
retstr = return_str(1, $return)
}
/**
* probe signal.syskill - Sending kill signal to a process
* @name: Name of the probe point
* @sig: The specific signal sent to the process
* @sig_name: A string representation of the signal
* @sig_pid: The PID of the process receiving the signal
* @pid_name: The name of the signal recipient
* @task: A task handle to the signal recipient
*/
probe signal.syskill = syscall.kill
{
name = "syskill"
sig_name = _signal_name(sig)
sig_pid = pid
task = pid2task(pid)
pid_name = task? task_execname(task): ""
}
/**
* probe signal.syskill.return - Sending kill signal completed
*/
probe signal.syskill.return = syscall.kill.return
{
name = "syskill"
}
/**
* probe signal.sys_tkill - Sending a kill signal to a thread
* @name: Name of the probe point
* @sig_pid: The PID of the process receiving the kill signal
* @pid_name: The name of the signal recipient
* @sig: The specific signal sent to the process
* @sig_name: A string representation of the signal
* @task: A task handle to the signal recipient
*
* The tkill call is analogous to kill(2),
* except that it also allows a process within a specific thread group to
* be targeted. Such processes are targeted through their unique
* thread IDs (TID).
*/
probe signal.systkill = syscall.tkill
{
name = "systkill"
sig_name = _signal_name(sig)
sig_pid = pid
task = pid2task(pid)
pid_name = task? task_execname(task): ""
}
/**
* probe signal.systkill.return - Sending kill signal to a thread completed
* @name: Name of the probe point
* @retstr: The return value to either __group_send_sig_info,
*/
probe signal.systkill.return = syscall.tkill.return
{
name = "systkill"
}
/**
* probe signal.sys_tgkill - Sending kill signal to a thread group
* @name: Name of the probe point
* @sig_pid: The PID of the thread receiving the kill signal
* @pid_name: The name of the signal recipient
* @tgid: The thread group ID of the thread receiving the kill signal
* @sig: The specific kill signal sent to the process
* @sig_name: A string representation of the signal
* @task: A task handle to the signal recipient
*
* The tgkill call is similar to tkill,
* except that it also allows the caller to specify the thread group ID of
* the thread to be signalled. This protects against TID reuse.
*/
probe signal.systgkill = syscall.tgkill
{
name = "systgkill"
sig_name = _signal_name(sig)
sig_pid = pid
task = pid2task(pid)
pid_name = task? task_execname(task): ""
}
/**
* probe signal.sys_tgkill.return - Sending kill signal to a thread group completed
* @name: Name of the probe point
* @retstr: The return value to either __group_send_sig_info,
*/
probe signal.systgkill.return = syscall.tgkill.return
{
name = "systgkill"
}
/**
* probe signal.send_sig_queue - Queuing a signal to a process
* @name: Name of the probe point
* @sig: The queued signal
* @sig_name: A string representation of the signal
* @sig_pid: The PID of the process to which the signal is queued
* @pid_name: Name of the process to which the signal is queued
* @sigqueue_addr: The address of the signal queue
*/
probe signal.send_sig_queue =
kernel.function("send_sigqueue"),
kernel.function("send_group_sigqueue") ?
{
name = "send_sig_queue"
if (! @defined($sig)) {
sig = $q->info->si_signo
sig_name = _signal_name($q->info->si_signo)
}
else {
sig = $sig
sig_name = _signal_name($sig)
}
if (@defined($t)) {
sig_pid = $t->pid
pid_name = kernel_string($t->comm)
}
else {
sig_pid = $p->pid
pid_name = kernel_string($p->comm)
}
sigqueue_addr = $q
}
/**
* probe signal.send_sig_queue.return - Queuing a signal to a process completed
* @name: Name of the probe point
* @retstr: Return value as a string
*/
probe signal.send_sig_queue.return =
kernel.function("send_sigqueue").return,
kernel.function("send_group_sigqueue").return ?
{
name = "send_sig_queue"
retstr = return_str(1, $return)
}
/**
* probe signal.pending - Examining pending signal
* @name: Name of the probe point
* @sigset_add: The address of the user-space signal set
* (sigset_t)
* @sigset_size: The size of the user-space signal set
*
* This probe is used to examine a set of signals pending for delivery
* to a specific thread. This normally occurs when the
* do_sigpending kernel function is executed.
*/
probe signal.pending = kernel.function("do_sigpending").call !,
kernel.function("sys_rt_sigpending").call ?,
kernel.function("compat_sys_rt_sigpending").call ?
{
name = "pending"
sigset_add=@choose_defined($set, $uset)
# Note that this isn't 100% correct if $sigsetsize doesn't
# exist (in the case of newer do_sigpending() calls). Instead,
# we're returning the default size of a sigset_t.
sigset_size=@choose_defined($sigsetsize, @cast_sizeof("sigset_t"))
}
/**
* probe signal.pending.return - Examination of pending signal completed
* @name: Name of the probe point
* @retstr: Return value as a string
*/
probe signal.pending.return = kernel.function("do_sigpending").return !,
kernel.function("sys_rt_sigpending").return ?,
kernel.function("compat_sys_rt_sigpending").return ?
{
name = "pending"
retstr = return_str(1, $return)
}
/**
* probe signal.handle - Signal handler being invoked
* @name: Name of the probe point
* @sig: The signal number that invoked the signal handler
* @sig_name: A string representation of the signal
* @sinfo: The address of the siginfo table
* @sig_code: The si_code value of the siginfo signal
* @ka_addr: The address of the k_sigaction table
* associated with the signal
* @oldset_addr: The address of the bitmask array of blocked signals
* (deprecated in SystemTap 2.1)
* @regs: The address of the kernel-mode stack area (deprecated in
* SystemTap 2.1)
* @sig_mode: Indicates whether the signal was a user-mode or kernel-mode signal
*/
probe signal.handle = __signal.handle.tp !, __signal.handle.kp
{
name = "handle"
// Check whether the signal is a User Mode or Kernel mode Signal.
if (sinfo == 0 && sig_code <= 0)
sig_mode = "User Mode Signal"
else if (sinfo >= 1)
sig_mode = "Kernel Mode Signal"
}
probe __signal.handle.tp = kernel.trace("signal_deliver") ?
{
sig = $sig
sig_name = _signal_name($sig)
sinfo = $info
sig_code = $info->si_code
ka_addr = $ka
%( systemtap_v <= "2.1" %?
oldset_addr = 0
regs = 0
%)
}
probe __signal.handle.kp = kernel.function("handle_rt_signal64") ?,
kernel.function("handle_rt_signal32") ?,
kernel.function("handle_signal32") !,
kernel.function("handle_signal")
{
if (@defined($sig)) {
sig = $sig
sig_name = _signal_name($sig)
}
else {
sig = $signr
sig_name = _signal_name($signr)
}
sinfo = $info
sig_code = $info->si_code
ka_addr = $ka
%( systemtap_v <= "2.1" %?
oldset_addr = @choose_defined($oldset, @choose_defined($set, 0))
regs = $regs
%)
}
%( systemtap_v <= "2.1" %?
/**
* probe signal.handle.return - Signal handler invocation completed
* (deprecated in SystemTap 2.1)
* @name: Name of the probe point
* @retstr: Return value as a string
*/
probe signal.handle.return = kernel.function("handle_rt_signal64").return ?,
kernel.function("handle_rt_signal32").return ?,
kernel.function("handle_signal32").return !,
kernel.function("handle_signal").return ?
{
name = "handle"
retstr = return_str(1, $return)
}
%)
/**
* probe signal.do_action - Examining or changing a signal action
* @name: Name of the probe point
* @sig: The signal to be examined/changed
* @sig_name: A string representation of the signal
* @sigact_addr: The address of the new sigaction
* struct associated with the signal
* @oldsigact_addr: The address of the old sigaction
* struct associated with the signal
* @sa_handler: The new handler of the signal
* @sa_mask: The new mask of the signal
*/
probe signal.do_action = kernel.function("do_sigaction")
{
name = "do_action"
sig = $sig
sig_name = _signal_name($sig)
sigact_addr = $act
oldsigact_addr = $oact
if(sigact_addr != 0)
{
sa_handler = $act->sa->sa_handler
sa_mask = __get_action_mask($act)
}
}
/**
* probe signal.do_action.return - Examining or changing a signal action completed
* @name: Name of the probe point
* @retstr: Return value as a string
*/
probe signal.do_action.return = kernel.function("do_sigaction").return
{
name = "do_action"
retstr = return_str(1, $return)
}
function get_sigaction_mask:long(act:long)
{
return __get_action_mask(act)
}
@__private30 function __get_action_mask:long(act:long) %{ /* pure */
int i;
struct k_sigaction *act = (struct k_sigaction *)((uintptr_t)STAP_ARG_act);
sigset_t *sigset = &act->sa.sa_mask;
STAP_RETVALUE = kread(&(sigset->sig[0]));
for (i=1; i<_NSIG_WORDS; ++i) {
uint64_t part = kread(&(sigset->sig[i]));
STAP_RETVALUE |= part << (_NSIG_BPW*i);
}
CATCH_DEREF_FAULT();
%}
/**
* probe signal.procmask - Examining or changing blocked signals
* @name: Name of the probe point
* @how: Indicates how to change the blocked signals; possible values are
* SIG_BLOCK=0 (for blocking signals),
* SIG_UNBLOCK=1 (for unblocking signals), and
* SIG_SETMASK=2 for setting the signal mask.
* @sigset_addr: The address of the signal set (sigset_t)
* to be implemented
* @oldsigset_addr: The old address of the signal set
* (sigset_t)
* @sigset: The actual value to be set for sigset_t
* (correct?)
*/
probe signal.procmask = kernel.function("sigprocmask")
{
name = "procmask"
how=$how
sigset_addr = $set
oldsigset_addr = $oldset
sigset = get_sigset($set)
}
function get_sigset:long(sigset:long) %{ /* pure */
int i;
sigset_t *sigset = (sigset_t *)((uintptr_t)STAP_ARG_sigset);
STAP_RETVALUE = kread(&(sigset->sig[0]));
for (i=1; i<_NSIG_WORDS; ++i) {
uint64_t part = kread(&(sigset->sig[i]));
STAP_RETVALUE |= part << (_NSIG_BPW*i);
}
CATCH_DEREF_FAULT();
%}
/**
* probe signal.procmask.return - Examining or changing blocked signals completed
* @name: Name of the probe point
* @retstr: Return value as a string
*/
probe signal.procmask.return = kernel.function("sigprocmask").return
{
name = "procmask"
retstr = return_str(1, $return)
}
/**
* probe signal.flush - Flushing all pending signals for a task
* @name: Name of the probe point
* @task: The task handler of the process performing the flush
* @sig_pid: The PID of the process associated with the task
* performing the flush
* @pid_name: The name of the process associated with the task
* performing the flush
*/
probe signal.flush = kernel.function("flush_signals")
{
name = "flush"
task = $t
sig_pid = $t->pid
pid_name = kernel_string($t->comm)
}
/**
* sfunction get_sa_flags - Returns the numeric value of sa_flags
*
* @act: address of the sigaction to query.
*/
function get_sa_flags:long (act:long)
{
return @cast(act, "k_sigaction", "kernel")->sa->sa_flags
}
/**
* sfunction get_sa_handler - Returns the numeric value of sa_handler
*
* @act: address of the sigaction to query.
*/
function get_sa_handler:long (act:long)
{
return @cast(act, "k_sigaction", "kernel")->sa->sa_handler
}
// sa_mask contains the set of signals to be blocked when executing the
// signal handler. This function returns a string, delimited by ",".
//
// struct task_struct {
// [...]
// struct signal_struct//signal;
// struct sighand_struct//sighand;
// [...]
// struct sighand_struct {
// atomic_t count;
// struct k_sigaction action[_NSIG];
// [...]
// struct k_sigaction {
// struct sigaction sa;
// };
//
// struct sigaction {
// [...]
// sigset_t sa_mask;
// };
/**
* sfunction sigset_mask_str - Returns the string representation of a sigset
*
* @mask: the sigset to convert to string.
*/
function sigset_mask_str:string (mask:long) %{ /* pure */
int i, len;
char *str = STAP_RETVALUE, tmp[5];
str[0] = '\0';
for (i = 1; i < _NSIG; ++i, STAP_ARG_mask >>=1)
if (STAP_ARG_mask & 1) {
snprintf(tmp, sizeof(tmp), "%u,", i);
strlcat(str, tmp, MAXSTRINGLEN);
}
len = strlen(str);
if (len) str[len - 1] = '\0';
%}
// task_struct->blocked signal mask contains the set of signals that are
// currently blocked.
//
// struct task_struct {
// [...]
// sigset_t blocked, real_blocked;
/**
* sfunction is_sig_blocked - Returns 1 if the signal is currently blocked, or 0 if it is not
*
* @task: address of the task_struct to query.
* @sig: the signal number to test.
*/
function is_sig_blocked:long (task:long, sig:long) %{ /* pure */
int i;
sigset_t blocked;
struct task_struct *p = (struct task_struct *)((uintptr_t)STAP_ARG_task);
for (i = 0; i < _NSIG_WORDS; ++i)
blocked.sig[i] = kread(&p->blocked.sig[i]);
STAP_RETVALUE = sigismember(&blocked, STAP_ARG_sig);
CATCH_DEREF_FAULT();
%}
/**
* sfunction sa_flags_str - Returns the string representation of sa_flags
*
* @sa_flags: the set of flags to convert to string.
*/
function sa_flags_str:string (sa_flags:long) %{ /* pure */
int len;
char *str = STAP_RETVALUE;
str[0] = '\0';
if (STAP_ARG_sa_flags & 0x00000001u) strlcat(str, "NOCLDSTOP|", MAXSTRINGLEN);
if (STAP_ARG_sa_flags & 0x00000002u) strlcat(str, "NOCLDWAIT|", MAXSTRINGLEN);
if (STAP_ARG_sa_flags & 0x00000004u) strlcat(str, "SIGINFO|", MAXSTRINGLEN);
if (STAP_ARG_sa_flags & 0x08000000u) strlcat(str, "ONSTACK|", MAXSTRINGLEN);
if (STAP_ARG_sa_flags & 0x10000000u) strlcat(str, "RESTART|", MAXSTRINGLEN);
if (STAP_ARG_sa_flags & 0x40000000u) strlcat(str, "NODEFER|", MAXSTRINGLEN);
if (STAP_ARG_sa_flags & 0x80000000u) strlcat(str, "RESETHAND|", MAXSTRINGLEN);
if (STAP_ARG_sa_flags & 0x04000000) strlcat(str, "RESTORER|", MAXSTRINGLEN);
len = strlen(str);
if (len) str[len - 1] = '\0';
%}
/**
* sfunction sa_handler - Returns the string representation of an sa_handler
*
* @handler: the sa_handler to convert to string.
*
* Description: Returns the string representation of an sa_handler.
* If it is not SIG_DFL, SIG_IGN or SIG_ERR, it will return the address
* of the handler.
*/
function sa_handler_str(handler) {
if (handler == 0) return "default"; /* SIG_DFL */
if (handler == 1) return "ignored"; /* SIG_IGN */
if (handler == -1) return "error"; /* SIG_ERR */
return sprintf("%p", handler); /* userspace address */
}
// Signals start from 1 not 0.
@__private30 global __sig[64]
probe init {
__sig[1] = "HUP"
__sig[2] = "INT"
__sig[3] = "QUIT"
__sig[4] = "ILL"
__sig[5] = "TRAP"
__sig[6] = "ABRT" /* or IOT */
__sig[7] = "BUS"
__sig[8] = "FPE"
__sig[9] = "KILL"
__sig[10] = "USR1"
__sig[11] = "SEGV"
__sig[12] = "USR2"
__sig[13] = "PIPE"
__sig[14] = "ALRM"
__sig[15] = "TERM"
__sig[16] = "STKFLT"
__sig[17] = "CHLD" /* or CLD */
__sig[18] = "CONT"
__sig[19] = "STOP"
__sig[20] = "TSTP"
__sig[21] = "TTIN"
__sig[22] = "TTOU"
__sig[23] = "URG"
__sig[24] = "XCPU"
__sig[25] = "XFSZ"
__sig[26] = "VTALRM"
__sig[27] = "PROF"
__sig[28] = "WINCH"
__sig[29] = "IO/POLL"
__sig[30] = "PWR"
__sig[31] = "SYS" /* or UNUSED */
__sig[32] = "RTMIN"
__sig[33] = "RTMIN+1"
__sig[34] = "RTMIN+2"
__sig[35] = "RTMIN+3"
__sig[36] = "RTMIN+4"
__sig[37] = "RTMIN+5"
__sig[38] = "RTMIN+6"
__sig[39] = "RTMIN+7"
__sig[40] = "RTMIN+8"
__sig[41] = "RTMIN+9"
__sig[42] = "RTMIN+10"
__sig[43] = "RTMIN+11"
__sig[44] = "RTMIN+12"
__sig[45] = "RTMIN+13"
__sig[46] = "RTMIN+14"
__sig[47] = "RTMIN+15"
__sig[48] = "RTMIN+16"
__sig[49] = "RTMIN+17"
__sig[50] = "RTMIN+18"
__sig[51] = "RTMIN+19"
__sig[52] = "RTMIN+20"
__sig[53] = "RTMIN+21"
__sig[54] = "RTMIN+22"
__sig[55] = "RTMIN+23"
__sig[56] = "RTMIN+24"
__sig[57] = "RTMIN+25"
__sig[58] = "RTMIN+26"
__sig[59] = "RTMIN+27"
__sig[60] = "RTMIN+28"
__sig[61] = "RTMIN+29"
__sig[62] = "RTMIN+30"
__sig[63] = "RTMIN+31"
__sig[64] = "RTMIN+32"
}
/**
* sfunction signal_str - Returns the string representation of a signal number
*
* @num: the signal number to convert to string.
*/
function signal_str(num) {
return __sig[num]
}
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists