Sindbad~EG File Manager
"""
EA-compatible analogue to np.putmask
"""
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
)
import numpy as np
from pandas._libs import lib
from pandas.core.dtypes.cast import infer_dtype_from
from pandas.core.dtypes.common import is_list_like
from pandas.core.arrays import ExtensionArray
if TYPE_CHECKING:
from pandas._typing import (
ArrayLike,
npt,
)
from pandas import MultiIndex
def putmask_inplace(values: ArrayLike, mask: npt.NDArray[np.bool_], value: Any) -> None:
"""
ExtensionArray-compatible implementation of np.putmask. The main
difference is we do not handle repeating or truncating like numpy.
Parameters
----------
values: np.ndarray or ExtensionArray
mask : np.ndarray[bool]
We assume extract_bool_array has already been called.
value : Any
"""
if (
not isinstance(values, np.ndarray)
or (values.dtype == object and not lib.is_scalar(value))
# GH#43424: np.putmask raises TypeError if we cannot cast between types with
# rule = "safe", a stricter guarantee we may not have here
or (
isinstance(value, np.ndarray) and not np.can_cast(value.dtype, values.dtype)
)
):
# GH#19266 using np.putmask gives unexpected results with listlike value
# along with object dtype
if is_list_like(value) and len(value) == len(values):
values[mask] = value[mask]
else:
values[mask] = value
else:
# GH#37833 np.putmask is more performant than __setitem__
np.putmask(values, mask, value)
def putmask_without_repeat(
values: np.ndarray, mask: npt.NDArray[np.bool_], new: Any
) -> None:
"""
np.putmask will truncate or repeat if `new` is a listlike with
len(new) != len(values). We require an exact match.
Parameters
----------
values : np.ndarray
mask : np.ndarray[bool]
new : Any
"""
if getattr(new, "ndim", 0) >= 1:
new = new.astype(values.dtype, copy=False)
# TODO: this prob needs some better checking for 2D cases
nlocs = mask.sum()
if nlocs > 0 and is_list_like(new) and getattr(new, "ndim", 1) == 1:
shape = np.shape(new)
# np.shape compat for if setitem_datetimelike_compat
# changed arraylike to list e.g. test_where_dt64_2d
if nlocs == shape[-1]:
# GH#30567
# If length of ``new`` is less than the length of ``values``,
# `np.putmask` would first repeat the ``new`` array and then
# assign the masked values hence produces incorrect result.
# `np.place` on the other hand uses the ``new`` values at it is
# to place in the masked locations of ``values``
np.place(values, mask, new)
# i.e. values[mask] = new
elif mask.shape[-1] == shape[-1] or shape[-1] == 1:
np.putmask(values, mask, new)
else:
raise ValueError("cannot assign mismatch length to masked array")
else:
np.putmask(values, mask, new)
def validate_putmask(
values: ArrayLike | MultiIndex, mask: np.ndarray
) -> tuple[npt.NDArray[np.bool_], bool]:
"""
Validate mask and check if this putmask operation is a no-op.
"""
mask = extract_bool_array(mask)
if mask.shape != values.shape:
raise ValueError("putmask: mask and data must be the same size")
noop = not mask.any()
return mask, noop
def extract_bool_array(mask: ArrayLike) -> npt.NDArray[np.bool_]:
"""
If we have a SparseArray or BooleanArray, convert it to ndarray[bool].
"""
if isinstance(mask, ExtensionArray):
# We could have BooleanArray, Sparse[bool], ...
# Except for BooleanArray, this is equivalent to just
# np.asarray(mask, dtype=bool)
mask = mask.to_numpy(dtype=bool, na_value=False)
mask = np.asarray(mask, dtype=bool)
return mask
def setitem_datetimelike_compat(values: np.ndarray, num_set: int, other):
"""
Parameters
----------
values : np.ndarray
num_set : int
For putmask, this is mask.sum()
other : Any
"""
if values.dtype == object:
dtype, _ = infer_dtype_from(other)
if lib.is_np_dtype(dtype, "mM"):
# https://github.com/numpy/numpy/issues/12550
# timedelta64 will incorrectly cast to int
if not is_list_like(other):
other = [other] * num_set
else:
other = list(other)
return other
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists