Sindbad~EG File Manager
"""
Methods used by Block.replace and related methods.
"""
from __future__ import annotations
import operator
import re
from re import Pattern
from typing import (
TYPE_CHECKING,
Any,
)
import numpy as np
from pandas.core.dtypes.common import (
is_bool,
is_re,
is_re_compilable,
)
from pandas.core.dtypes.missing import isna
if TYPE_CHECKING:
from pandas._typing import (
ArrayLike,
Scalar,
npt,
)
def should_use_regex(regex: bool, to_replace: Any) -> bool:
"""
Decide whether to treat `to_replace` as a regular expression.
"""
if is_re(to_replace):
regex = True
regex = regex and is_re_compilable(to_replace)
# Don't use regex if the pattern is empty.
regex = regex and re.compile(to_replace).pattern != ""
return regex
def compare_or_regex_search(
a: ArrayLike, b: Scalar | Pattern, regex: bool, mask: npt.NDArray[np.bool_]
) -> ArrayLike:
"""
Compare two array-like inputs of the same shape or two scalar values
Calls operator.eq or re.search, depending on regex argument. If regex is
True, perform an element-wise regex matching.
Parameters
----------
a : array-like
b : scalar or regex pattern
regex : bool
mask : np.ndarray[bool]
Returns
-------
mask : array-like of bool
"""
if isna(b):
return ~mask
def _check_comparison_types(
result: ArrayLike | bool, a: ArrayLike, b: Scalar | Pattern
):
"""
Raises an error if the two arrays (a,b) cannot be compared.
Otherwise, returns the comparison result as expected.
"""
if is_bool(result) and isinstance(a, np.ndarray):
type_names = [type(a).__name__, type(b).__name__]
type_names[0] = f"ndarray(dtype={a.dtype})"
raise TypeError(
f"Cannot compare types {repr(type_names[0])} and {repr(type_names[1])}"
)
if not regex or not should_use_regex(regex, b):
# TODO: should use missing.mask_missing?
op = lambda x: operator.eq(x, b)
else:
op = np.vectorize(
lambda x: bool(re.search(b, x))
if isinstance(x, str) and isinstance(b, (str, Pattern))
else False
)
# GH#32621 use mask to avoid comparing to NAs
if isinstance(a, np.ndarray):
a = a[mask]
result = op(a)
if isinstance(result, np.ndarray) and mask is not None:
# The shape of the mask can differ to that of the result
# since we may compare only a subset of a's or b's elements
tmp = np.zeros(mask.shape, dtype=np.bool_)
np.place(tmp, mask, result)
result = tmp
_check_comparison_types(result, a, b)
return result
def replace_regex(
values: ArrayLike, rx: re.Pattern, value, mask: npt.NDArray[np.bool_] | None
) -> None:
"""
Parameters
----------
values : ArrayLike
Object dtype.
rx : re.Pattern
value : Any
mask : np.ndarray[bool], optional
Notes
-----
Alters values in-place.
"""
# deal with replacing values with objects (strings) that match but
# whose replacement is not a string (numeric, nan, object)
if isna(value) or not isinstance(value, str):
def re_replacer(s):
if is_re(rx) and isinstance(s, str):
return value if rx.search(s) is not None else s
else:
return s
else:
# value is guaranteed to be a string here, s can be either a string
# or null if it's null it gets returned
def re_replacer(s):
if is_re(rx) and isinstance(s, str):
return rx.sub(value, s)
else:
return s
f = np.vectorize(re_replacer, otypes=[np.object_])
if mask is None:
values[:] = f(values)
else:
values[mask] = f(values[mask])
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists