Sindbad~EG File Manager
from __future__ import annotations
import functools
import re
import textwrap
from typing import (
TYPE_CHECKING,
Callable,
Literal,
cast,
)
import unicodedata
import numpy as np
from pandas._libs import lib
import pandas._libs.missing as libmissing
import pandas._libs.ops as libops
from pandas.core.dtypes.missing import isna
from pandas.core.strings.base import BaseStringArrayMethods
if TYPE_CHECKING:
from collections.abc import Sequence
from pandas._typing import (
NpDtype,
Scalar,
)
from pandas import Series
class ObjectStringArrayMixin(BaseStringArrayMethods):
"""
String Methods operating on object-dtype ndarrays.
"""
_str_na_value = np.nan
def __len__(self) -> int:
# For typing, _str_map relies on the object being sized.
raise NotImplementedError
def _str_map(
self, f, na_value=None, dtype: NpDtype | None = None, convert: bool = True
):
"""
Map a callable over valid elements of the array.
Parameters
----------
f : Callable
A function to call on each non-NA element.
na_value : Scalar, optional
The value to set for NA values. Might also be used for the
fill value if the callable `f` raises an exception.
This defaults to ``self._str_na_value`` which is ``np.nan``
for object-dtype and Categorical and ``pd.NA`` for StringArray.
dtype : Dtype, optional
The dtype of the result array.
convert : bool, default True
Whether to call `maybe_convert_objects` on the resulting ndarray
"""
if dtype is None:
dtype = np.dtype("object")
if na_value is None:
na_value = self._str_na_value
if not len(self):
return np.array([], dtype=dtype)
arr = np.asarray(self, dtype=object)
mask = isna(arr)
map_convert = convert and not np.all(mask)
try:
result = lib.map_infer_mask(arr, f, mask.view(np.uint8), map_convert)
except (TypeError, AttributeError) as err:
# Reraise the exception if callable `f` got wrong number of args.
# The user may want to be warned by this, instead of getting NaN
p_err = (
r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
r"(?(3)required )positional arguments?"
)
if len(err.args) >= 1 and re.search(p_err, err.args[0]):
# FIXME: this should be totally avoidable
raise err
def g(x):
# This type of fallback behavior can be removed once
# we remove object-dtype .str accessor.
try:
return f(x)
except (TypeError, AttributeError):
return na_value
return self._str_map(g, na_value=na_value, dtype=dtype)
if not isinstance(result, np.ndarray):
return result
if na_value is not np.nan:
np.putmask(result, mask, na_value)
if convert and result.dtype == object:
result = lib.maybe_convert_objects(result)
return result
def _str_count(self, pat, flags: int = 0):
regex = re.compile(pat, flags=flags)
f = lambda x: len(regex.findall(x))
return self._str_map(f, dtype="int64")
def _str_pad(
self,
width: int,
side: Literal["left", "right", "both"] = "left",
fillchar: str = " ",
):
if side == "left":
f = lambda x: x.rjust(width, fillchar)
elif side == "right":
f = lambda x: x.ljust(width, fillchar)
elif side == "both":
f = lambda x: x.center(width, fillchar)
else: # pragma: no cover
raise ValueError("Invalid side")
return self._str_map(f)
def _str_contains(
self, pat, case: bool = True, flags: int = 0, na=np.nan, regex: bool = True
):
if regex:
if not case:
flags |= re.IGNORECASE
pat = re.compile(pat, flags=flags)
f = lambda x: pat.search(x) is not None
else:
if case:
f = lambda x: pat in x
else:
upper_pat = pat.upper()
f = lambda x: upper_pat in x.upper()
return self._str_map(f, na, dtype=np.dtype("bool"))
def _str_startswith(self, pat, na=None):
f = lambda x: x.startswith(pat)
return self._str_map(f, na_value=na, dtype=np.dtype(bool))
def _str_endswith(self, pat, na=None):
f = lambda x: x.endswith(pat)
return self._str_map(f, na_value=na, dtype=np.dtype(bool))
def _str_replace(
self,
pat: str | re.Pattern,
repl: str | Callable,
n: int = -1,
case: bool = True,
flags: int = 0,
regex: bool = True,
):
if case is False:
# add case flag, if provided
flags |= re.IGNORECASE
if regex or flags or callable(repl):
if not isinstance(pat, re.Pattern):
if regex is False:
pat = re.escape(pat)
pat = re.compile(pat, flags=flags)
n = n if n >= 0 else 0
f = lambda x: pat.sub(repl=repl, string=x, count=n)
else:
f = lambda x: x.replace(pat, repl, n)
return self._str_map(f, dtype=str)
def _str_repeat(self, repeats: int | Sequence[int]):
if lib.is_integer(repeats):
rint = cast(int, repeats)
def scalar_rep(x):
try:
return bytes.__mul__(x, rint)
except TypeError:
return str.__mul__(x, rint)
return self._str_map(scalar_rep, dtype=str)
else:
from pandas.core.arrays.string_ import BaseStringArray
def rep(x, r):
if x is libmissing.NA:
return x
try:
return bytes.__mul__(x, r)
except TypeError:
return str.__mul__(x, r)
result = libops.vec_binop(
np.asarray(self),
np.asarray(repeats, dtype=object),
rep,
)
if isinstance(self, BaseStringArray):
# Not going through map, so we have to do this here.
result = type(self)._from_sequence(result, dtype=self.dtype)
return result
def _str_match(
self, pat: str, case: bool = True, flags: int = 0, na: Scalar | None = None
):
if not case:
flags |= re.IGNORECASE
regex = re.compile(pat, flags=flags)
f = lambda x: regex.match(x) is not None
return self._str_map(f, na_value=na, dtype=np.dtype(bool))
def _str_fullmatch(
self,
pat: str | re.Pattern,
case: bool = True,
flags: int = 0,
na: Scalar | None = None,
):
if not case:
flags |= re.IGNORECASE
regex = re.compile(pat, flags=flags)
f = lambda x: regex.fullmatch(x) is not None
return self._str_map(f, na_value=na, dtype=np.dtype(bool))
def _str_encode(self, encoding, errors: str = "strict"):
f = lambda x: x.encode(encoding, errors=errors)
return self._str_map(f, dtype=object)
def _str_find(self, sub, start: int = 0, end=None):
return self._str_find_(sub, start, end, side="left")
def _str_rfind(self, sub, start: int = 0, end=None):
return self._str_find_(sub, start, end, side="right")
def _str_find_(self, sub, start, end, side):
if side == "left":
method = "find"
elif side == "right":
method = "rfind"
else: # pragma: no cover
raise ValueError("Invalid side")
if end is None:
f = lambda x: getattr(x, method)(sub, start)
else:
f = lambda x: getattr(x, method)(sub, start, end)
return self._str_map(f, dtype="int64")
def _str_findall(self, pat, flags: int = 0):
regex = re.compile(pat, flags=flags)
return self._str_map(regex.findall, dtype="object")
def _str_get(self, i):
def f(x):
if isinstance(x, dict):
return x.get(i)
elif len(x) > i >= -len(x):
return x[i]
return self._str_na_value
return self._str_map(f)
def _str_index(self, sub, start: int = 0, end=None):
if end:
f = lambda x: x.index(sub, start, end)
else:
f = lambda x: x.index(sub, start, end)
return self._str_map(f, dtype="int64")
def _str_rindex(self, sub, start: int = 0, end=None):
if end:
f = lambda x: x.rindex(sub, start, end)
else:
f = lambda x: x.rindex(sub, start, end)
return self._str_map(f, dtype="int64")
def _str_join(self, sep: str):
return self._str_map(sep.join)
def _str_partition(self, sep: str, expand):
result = self._str_map(lambda x: x.partition(sep), dtype="object")
return result
def _str_rpartition(self, sep: str, expand):
return self._str_map(lambda x: x.rpartition(sep), dtype="object")
def _str_len(self):
return self._str_map(len, dtype="int64")
def _str_slice(self, start=None, stop=None, step=None):
obj = slice(start, stop, step)
return self._str_map(lambda x: x[obj])
def _str_slice_replace(self, start=None, stop=None, repl=None):
if repl is None:
repl = ""
def f(x):
if x[start:stop] == "":
local_stop = start
else:
local_stop = stop
y = ""
if start is not None:
y += x[:start]
y += repl
if stop is not None:
y += x[local_stop:]
return y
return self._str_map(f)
def _str_split(
self,
pat: str | re.Pattern | None = None,
n=-1,
expand: bool = False,
regex: bool | None = None,
):
if pat is None:
if n is None or n == 0:
n = -1
f = lambda x: x.split(pat, n)
else:
new_pat: str | re.Pattern
if regex is True or isinstance(pat, re.Pattern):
new_pat = re.compile(pat)
elif regex is False:
new_pat = pat
# regex is None so link to old behavior #43563
else:
if len(pat) == 1:
new_pat = pat
else:
new_pat = re.compile(pat)
if isinstance(new_pat, re.Pattern):
if n is None or n == -1:
n = 0
f = lambda x: new_pat.split(x, maxsplit=n)
else:
if n is None or n == 0:
n = -1
f = lambda x: x.split(pat, n)
return self._str_map(f, dtype=object)
def _str_rsplit(self, pat=None, n=-1):
if n is None or n == 0:
n = -1
f = lambda x: x.rsplit(pat, n)
return self._str_map(f, dtype="object")
def _str_translate(self, table):
return self._str_map(lambda x: x.translate(table))
def _str_wrap(self, width: int, **kwargs):
kwargs["width"] = width
tw = textwrap.TextWrapper(**kwargs)
return self._str_map(lambda s: "\n".join(tw.wrap(s)))
def _str_get_dummies(self, sep: str = "|"):
from pandas import Series
arr = Series(self).fillna("")
try:
arr = sep + arr + sep
except (TypeError, NotImplementedError):
arr = sep + arr.astype(str) + sep
tags: set[str] = set()
for ts in Series(arr, copy=False).str.split(sep):
tags.update(ts)
tags2 = sorted(tags - {""})
dummies = np.empty((len(arr), len(tags2)), dtype=np.int64)
def _isin(test_elements: str, element: str) -> bool:
return element in test_elements
for i, t in enumerate(tags2):
pat = sep + t + sep
dummies[:, i] = lib.map_infer(
arr.to_numpy(), functools.partial(_isin, element=pat)
)
return dummies, tags2
def _str_upper(self):
return self._str_map(lambda x: x.upper())
def _str_isalnum(self):
return self._str_map(str.isalnum, dtype="bool")
def _str_isalpha(self):
return self._str_map(str.isalpha, dtype="bool")
def _str_isdecimal(self):
return self._str_map(str.isdecimal, dtype="bool")
def _str_isdigit(self):
return self._str_map(str.isdigit, dtype="bool")
def _str_islower(self):
return self._str_map(str.islower, dtype="bool")
def _str_isnumeric(self):
return self._str_map(str.isnumeric, dtype="bool")
def _str_isspace(self):
return self._str_map(str.isspace, dtype="bool")
def _str_istitle(self):
return self._str_map(str.istitle, dtype="bool")
def _str_isupper(self):
return self._str_map(str.isupper, dtype="bool")
def _str_capitalize(self):
return self._str_map(str.capitalize)
def _str_casefold(self):
return self._str_map(str.casefold)
def _str_title(self):
return self._str_map(str.title)
def _str_swapcase(self):
return self._str_map(str.swapcase)
def _str_lower(self):
return self._str_map(str.lower)
def _str_normalize(self, form):
f = lambda x: unicodedata.normalize(form, x)
return self._str_map(f)
def _str_strip(self, to_strip=None):
return self._str_map(lambda x: x.strip(to_strip))
def _str_lstrip(self, to_strip=None):
return self._str_map(lambda x: x.lstrip(to_strip))
def _str_rstrip(self, to_strip=None):
return self._str_map(lambda x: x.rstrip(to_strip))
def _str_removeprefix(self, prefix: str) -> Series:
# outstanding question on whether to use native methods for users on Python 3.9+
# https://github.com/pandas-dev/pandas/pull/39226#issuecomment-836719770,
# in which case we could do return self._str_map(str.removeprefix)
def removeprefix(text: str) -> str:
if text.startswith(prefix):
return text[len(prefix) :]
return text
return self._str_map(removeprefix)
def _str_removesuffix(self, suffix: str) -> Series:
return self._str_map(lambda x: x.removesuffix(suffix))
def _str_extract(self, pat: str, flags: int = 0, expand: bool = True):
regex = re.compile(pat, flags=flags)
na_value = self._str_na_value
if not expand:
def g(x):
m = regex.search(x)
return m.groups()[0] if m else na_value
return self._str_map(g, convert=False)
empty_row = [na_value] * regex.groups
def f(x):
if not isinstance(x, str):
return empty_row
m = regex.search(x)
if m:
return [na_value if item is None else item for item in m.groups()]
else:
return empty_row
return [f(val) for val in np.asarray(self)]
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists