Sindbad~EG File Manager
"""
These the test the public routines exposed in types/common.py
related to inference and not otherwise tested in types/test_common.py
"""
import collections
from collections import namedtuple
from collections.abc import Iterator
from datetime import (
date,
datetime,
time,
timedelta,
)
from decimal import Decimal
from fractions import Fraction
from io import StringIO
import itertools
from numbers import Number
import re
import sys
from typing import (
Generic,
TypeVar,
)
import numpy as np
import pytest
import pytz
from pandas._libs import (
lib,
missing as libmissing,
ops as libops,
)
from pandas.compat.numpy import np_version_gt2
from pandas.core.dtypes import inference
from pandas.core.dtypes.cast import find_result_type
from pandas.core.dtypes.common import (
ensure_int32,
is_bool,
is_complex,
is_datetime64_any_dtype,
is_datetime64_dtype,
is_datetime64_ns_dtype,
is_datetime64tz_dtype,
is_float,
is_integer,
is_number,
is_scalar,
is_scipy_sparse,
is_timedelta64_dtype,
is_timedelta64_ns_dtype,
)
import pandas as pd
from pandas import (
Categorical,
DataFrame,
DateOffset,
DatetimeIndex,
Index,
Interval,
Period,
PeriodIndex,
Series,
Timedelta,
TimedeltaIndex,
Timestamp,
)
import pandas._testing as tm
from pandas.core.arrays import (
BooleanArray,
FloatingArray,
IntegerArray,
)
@pytest.fixture(params=[True, False], ids=str)
def coerce(request):
return request.param
class MockNumpyLikeArray:
"""
A class which is numpy-like (e.g. Pint's Quantity) but not actually numpy
The key is that it is not actually a numpy array so
``util.is_array(mock_numpy_like_array_instance)`` returns ``False``. Other
important properties are that the class defines a :meth:`__iter__` method
(so that ``isinstance(abc.Iterable)`` returns ``True``) and has a
:meth:`ndim` property, as pandas special-cases 0-dimensional arrays in some
cases.
We expect pandas to behave with respect to such duck arrays exactly as
with real numpy arrays. In particular, a 0-dimensional duck array is *NOT*
a scalar (`is_scalar(np.array(1)) == False`), but it is not list-like either.
"""
def __init__(self, values) -> None:
self._values = values
def __iter__(self) -> Iterator:
iter_values = iter(self._values)
def it_outer():
yield from iter_values
return it_outer()
def __len__(self) -> int:
return len(self._values)
def __array__(self, dtype=None, copy=None):
return np.asarray(self._values, dtype=dtype)
@property
def ndim(self):
return self._values.ndim
@property
def dtype(self):
return self._values.dtype
@property
def size(self):
return self._values.size
@property
def shape(self):
return self._values.shape
# collect all objects to be tested for list-like-ness; use tuples of objects,
# whether they are list-like or not (special casing for sets), and their ID
ll_params = [
([1], True, "list"),
([], True, "list-empty"),
((1,), True, "tuple"),
((), True, "tuple-empty"),
({"a": 1}, True, "dict"),
({}, True, "dict-empty"),
({"a", 1}, "set", "set"),
(set(), "set", "set-empty"),
(frozenset({"a", 1}), "set", "frozenset"),
(frozenset(), "set", "frozenset-empty"),
(iter([1, 2]), True, "iterator"),
(iter([]), True, "iterator-empty"),
((x for x in [1, 2]), True, "generator"),
((_ for _ in []), True, "generator-empty"),
(Series([1]), True, "Series"),
(Series([], dtype=object), True, "Series-empty"),
# Series.str will still raise a TypeError if iterated
(Series(["a"]).str, True, "StringMethods"),
(Series([], dtype="O").str, True, "StringMethods-empty"),
(Index([1]), True, "Index"),
(Index([]), True, "Index-empty"),
(DataFrame([[1]]), True, "DataFrame"),
(DataFrame(), True, "DataFrame-empty"),
(np.ndarray((2,) * 1), True, "ndarray-1d"),
(np.array([]), True, "ndarray-1d-empty"),
(np.ndarray((2,) * 2), True, "ndarray-2d"),
(np.array([[]]), True, "ndarray-2d-empty"),
(np.ndarray((2,) * 3), True, "ndarray-3d"),
(np.array([[[]]]), True, "ndarray-3d-empty"),
(np.ndarray((2,) * 4), True, "ndarray-4d"),
(np.array([[[[]]]]), True, "ndarray-4d-empty"),
(np.array(2), False, "ndarray-0d"),
(MockNumpyLikeArray(np.ndarray((2,) * 1)), True, "duck-ndarray-1d"),
(MockNumpyLikeArray(np.array([])), True, "duck-ndarray-1d-empty"),
(MockNumpyLikeArray(np.ndarray((2,) * 2)), True, "duck-ndarray-2d"),
(MockNumpyLikeArray(np.array([[]])), True, "duck-ndarray-2d-empty"),
(MockNumpyLikeArray(np.ndarray((2,) * 3)), True, "duck-ndarray-3d"),
(MockNumpyLikeArray(np.array([[[]]])), True, "duck-ndarray-3d-empty"),
(MockNumpyLikeArray(np.ndarray((2,) * 4)), True, "duck-ndarray-4d"),
(MockNumpyLikeArray(np.array([[[[]]]])), True, "duck-ndarray-4d-empty"),
(MockNumpyLikeArray(np.array(2)), False, "duck-ndarray-0d"),
(1, False, "int"),
(b"123", False, "bytes"),
(b"", False, "bytes-empty"),
("123", False, "string"),
("", False, "string-empty"),
(str, False, "string-type"),
(object(), False, "object"),
(np.nan, False, "NaN"),
(None, False, "None"),
]
objs, expected, ids = zip(*ll_params)
@pytest.fixture(params=zip(objs, expected), ids=ids)
def maybe_list_like(request):
return request.param
def test_is_list_like(maybe_list_like):
obj, expected = maybe_list_like
expected = True if expected == "set" else expected
assert inference.is_list_like(obj) == expected
def test_is_list_like_disallow_sets(maybe_list_like):
obj, expected = maybe_list_like
expected = False if expected == "set" else expected
assert inference.is_list_like(obj, allow_sets=False) == expected
def test_is_list_like_recursion():
# GH 33721
# interpreter would crash with SIGABRT
def list_like():
inference.is_list_like([])
list_like()
rec_limit = sys.getrecursionlimit()
try:
# Limit to avoid stack overflow on Windows CI
sys.setrecursionlimit(100)
with tm.external_error_raised(RecursionError):
list_like()
finally:
sys.setrecursionlimit(rec_limit)
def test_is_list_like_iter_is_none():
# GH 43373
# is_list_like was yielding false positives with __iter__ == None
class NotListLike:
def __getitem__(self, item):
return self
__iter__ = None
assert not inference.is_list_like(NotListLike())
def test_is_list_like_generic():
# GH 49649
# is_list_like was yielding false positives for Generic classes in python 3.11
T = TypeVar("T")
class MyDataFrame(DataFrame, Generic[T]):
...
tstc = MyDataFrame[int]
tst = MyDataFrame[int]({"x": [1, 2, 3]})
assert not inference.is_list_like(tstc)
assert isinstance(tst, DataFrame)
assert inference.is_list_like(tst)
def test_is_sequence():
is_seq = inference.is_sequence
assert is_seq((1, 2))
assert is_seq([1, 2])
assert not is_seq("abcd")
assert not is_seq(np.int64)
class A:
def __getitem__(self, item):
return 1
assert not is_seq(A())
def test_is_array_like():
assert inference.is_array_like(Series([], dtype=object))
assert inference.is_array_like(Series([1, 2]))
assert inference.is_array_like(np.array(["a", "b"]))
assert inference.is_array_like(Index(["2016-01-01"]))
assert inference.is_array_like(np.array([2, 3]))
assert inference.is_array_like(MockNumpyLikeArray(np.array([2, 3])))
class DtypeList(list):
dtype = "special"
assert inference.is_array_like(DtypeList())
assert not inference.is_array_like([1, 2, 3])
assert not inference.is_array_like(())
assert not inference.is_array_like("foo")
assert not inference.is_array_like(123)
@pytest.mark.parametrize(
"inner",
[
[],
[1],
(1,),
(1, 2),
{"a": 1},
{1, "a"},
Series([1]),
Series([], dtype=object),
Series(["a"]).str,
(x for x in range(5)),
],
)
@pytest.mark.parametrize("outer", [list, Series, np.array, tuple])
def test_is_nested_list_like_passes(inner, outer):
result = outer([inner for _ in range(5)])
assert inference.is_list_like(result)
@pytest.mark.parametrize(
"obj",
[
"abc",
[],
[1],
(1,),
["a"],
"a",
{"a"},
[1, 2, 3],
Series([1]),
DataFrame({"A": [1]}),
([1, 2] for _ in range(5)),
],
)
def test_is_nested_list_like_fails(obj):
assert not inference.is_nested_list_like(obj)
@pytest.mark.parametrize("ll", [{}, {"A": 1}, Series([1]), collections.defaultdict()])
def test_is_dict_like_passes(ll):
assert inference.is_dict_like(ll)
@pytest.mark.parametrize(
"ll",
[
"1",
1,
[1, 2],
(1, 2),
range(2),
Index([1]),
dict,
collections.defaultdict,
Series,
],
)
def test_is_dict_like_fails(ll):
assert not inference.is_dict_like(ll)
@pytest.mark.parametrize("has_keys", [True, False])
@pytest.mark.parametrize("has_getitem", [True, False])
@pytest.mark.parametrize("has_contains", [True, False])
def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains):
class DictLike:
def __init__(self, d) -> None:
self.d = d
if has_keys:
def keys(self):
return self.d.keys()
if has_getitem:
def __getitem__(self, key):
return self.d.__getitem__(key)
if has_contains:
def __contains__(self, key) -> bool:
return self.d.__contains__(key)
d = DictLike({1: 2})
result = inference.is_dict_like(d)
expected = has_keys and has_getitem and has_contains
assert result is expected
def test_is_file_like():
class MockFile:
pass
is_file = inference.is_file_like
data = StringIO("data")
assert is_file(data)
# No read / write attributes
# No iterator attributes
m = MockFile()
assert not is_file(m)
MockFile.write = lambda self: 0
# Write attribute but not an iterator
m = MockFile()
assert not is_file(m)
# gh-16530: Valid iterator just means we have the
# __iter__ attribute for our purposes.
MockFile.__iter__ = lambda self: self
# Valid write-only file
m = MockFile()
assert is_file(m)
del MockFile.write
MockFile.read = lambda self: 0
# Valid read-only file
m = MockFile()
assert is_file(m)
# Iterator but no read / write attributes
data = [1, 2, 3]
assert not is_file(data)
test_tuple = collections.namedtuple("test_tuple", ["a", "b", "c"])
@pytest.mark.parametrize("ll", [test_tuple(1, 2, 3)])
def test_is_names_tuple_passes(ll):
assert inference.is_named_tuple(ll)
@pytest.mark.parametrize("ll", [(1, 2, 3), "a", Series({"pi": 3.14})])
def test_is_names_tuple_fails(ll):
assert not inference.is_named_tuple(ll)
def test_is_hashable():
# all new-style classes are hashable by default
class HashableClass:
pass
class UnhashableClass1:
__hash__ = None
class UnhashableClass2:
def __hash__(self):
raise TypeError("Not hashable")
hashable = (1, 3.14, np.float64(3.14), "a", (), (1,), HashableClass())
not_hashable = ([], UnhashableClass1())
abc_hashable_not_really_hashable = (([],), UnhashableClass2())
for i in hashable:
assert inference.is_hashable(i)
for i in not_hashable:
assert not inference.is_hashable(i)
for i in abc_hashable_not_really_hashable:
assert not inference.is_hashable(i)
# numpy.array is no longer collections.abc.Hashable as of
# https://github.com/numpy/numpy/pull/5326, just test
# is_hashable()
assert not inference.is_hashable(np.array([]))
@pytest.mark.parametrize("ll", [re.compile("ad")])
def test_is_re_passes(ll):
assert inference.is_re(ll)
@pytest.mark.parametrize("ll", ["x", 2, 3, object()])
def test_is_re_fails(ll):
assert not inference.is_re(ll)
@pytest.mark.parametrize(
"ll", [r"a", "x", r"asdf", re.compile("adsf"), r"\u2233\s*", re.compile(r"")]
)
def test_is_recompilable_passes(ll):
assert inference.is_re_compilable(ll)
@pytest.mark.parametrize("ll", [1, [], object()])
def test_is_recompilable_fails(ll):
assert not inference.is_re_compilable(ll)
class TestInference:
@pytest.mark.parametrize(
"arr",
[
np.array(list("abc"), dtype="S1"),
np.array(list("abc"), dtype="S1").astype(object),
[b"a", np.nan, b"c"],
],
)
def test_infer_dtype_bytes(self, arr):
result = lib.infer_dtype(arr, skipna=True)
assert result == "bytes"
@pytest.mark.parametrize(
"value, expected",
[
(float("inf"), True),
(np.inf, True),
(-np.inf, False),
(1, False),
("a", False),
],
)
def test_isposinf_scalar(self, value, expected):
# GH 11352
result = libmissing.isposinf_scalar(value)
assert result is expected
@pytest.mark.parametrize(
"value, expected",
[
(float("-inf"), True),
(-np.inf, True),
(np.inf, False),
(1, False),
("a", False),
],
)
def test_isneginf_scalar(self, value, expected):
result = libmissing.isneginf_scalar(value)
assert result is expected
@pytest.mark.parametrize(
"convert_to_masked_nullable, exp",
[
(
True,
BooleanArray(
np.array([True, False], dtype="bool"), np.array([False, True])
),
),
(False, np.array([True, np.nan], dtype="object")),
],
)
def test_maybe_convert_nullable_boolean(self, convert_to_masked_nullable, exp):
# GH 40687
arr = np.array([True, np.nan], dtype=object)
result = libops.maybe_convert_bool(
arr, set(), convert_to_masked_nullable=convert_to_masked_nullable
)
if convert_to_masked_nullable:
tm.assert_extension_array_equal(BooleanArray(*result), exp)
else:
result = result[0]
tm.assert_numpy_array_equal(result, exp)
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
@pytest.mark.parametrize("coerce_numeric", [True, False])
@pytest.mark.parametrize(
"infinity", ["inf", "inF", "iNf", "Inf", "iNF", "InF", "INf", "INF"]
)
@pytest.mark.parametrize("prefix", ["", "-", "+"])
def test_maybe_convert_numeric_infinities(
self, coerce_numeric, infinity, prefix, convert_to_masked_nullable
):
# see gh-13274
result, _ = lib.maybe_convert_numeric(
np.array([prefix + infinity], dtype=object),
na_values={"", "NULL", "nan"},
coerce_numeric=coerce_numeric,
convert_to_masked_nullable=convert_to_masked_nullable,
)
expected = np.array([np.inf if prefix in ["", "+"] else -np.inf])
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
def test_maybe_convert_numeric_infinities_raises(self, convert_to_masked_nullable):
msg = "Unable to parse string"
with pytest.raises(ValueError, match=msg):
lib.maybe_convert_numeric(
np.array(["foo_inf"], dtype=object),
na_values={"", "NULL", "nan"},
coerce_numeric=False,
convert_to_masked_nullable=convert_to_masked_nullable,
)
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
def test_maybe_convert_numeric_post_floatify_nan(
self, coerce, convert_to_masked_nullable
):
# see gh-13314
data = np.array(["1.200", "-999.000", "4.500"], dtype=object)
expected = np.array([1.2, np.nan, 4.5], dtype=np.float64)
nan_values = {-999, -999.0}
out = lib.maybe_convert_numeric(
data,
nan_values,
coerce,
convert_to_masked_nullable=convert_to_masked_nullable,
)
if convert_to_masked_nullable:
expected = FloatingArray(expected, np.isnan(expected))
tm.assert_extension_array_equal(expected, FloatingArray(*out))
else:
out = out[0]
tm.assert_numpy_array_equal(out, expected)
def test_convert_infs(self):
arr = np.array(["inf", "inf", "inf"], dtype="O")
result, _ = lib.maybe_convert_numeric(arr, set(), False)
assert result.dtype == np.float64
arr = np.array(["-inf", "-inf", "-inf"], dtype="O")
result, _ = lib.maybe_convert_numeric(arr, set(), False)
assert result.dtype == np.float64
def test_scientific_no_exponent(self):
# See PR 12215
arr = np.array(["42E", "2E", "99e", "6e"], dtype="O")
result, _ = lib.maybe_convert_numeric(arr, set(), False, True)
assert np.all(np.isnan(result))
def test_convert_non_hashable(self):
# GH13324
# make sure that we are handing non-hashables
arr = np.array([[10.0, 2], 1.0, "apple"], dtype=object)
result, _ = lib.maybe_convert_numeric(arr, set(), False, True)
tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan]))
def test_convert_numeric_uint64(self):
arr = np.array([2**63], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set())[0], exp)
arr = np.array([str(2**63)], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set())[0], exp)
arr = np.array([np.uint64(2**63)], dtype=object)
exp = np.array([2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set())[0], exp)
@pytest.mark.parametrize(
"arr",
[
np.array([2**63, np.nan], dtype=object),
np.array([str(2**63), np.nan], dtype=object),
np.array([np.nan, 2**63], dtype=object),
np.array([np.nan, str(2**63)], dtype=object),
],
)
def test_convert_numeric_uint64_nan(self, coerce, arr):
expected = arr.astype(float) if coerce else arr.copy()
result, _ = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce)
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
def test_convert_numeric_uint64_nan_values(
self, coerce, convert_to_masked_nullable
):
arr = np.array([2**63, 2**63 + 1], dtype=object)
na_values = {2**63}
expected = (
np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()
)
result = lib.maybe_convert_numeric(
arr,
na_values,
coerce_numeric=coerce,
convert_to_masked_nullable=convert_to_masked_nullable,
)
if convert_to_masked_nullable and coerce:
expected = IntegerArray(
np.array([0, 2**63 + 1], dtype="u8"),
np.array([True, False], dtype="bool"),
)
result = IntegerArray(*result)
else:
result = result[0] # discard mask
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize(
"case",
[
np.array([2**63, -1], dtype=object),
np.array([str(2**63), -1], dtype=object),
np.array([str(2**63), str(-1)], dtype=object),
np.array([-1, 2**63], dtype=object),
np.array([-1, str(2**63)], dtype=object),
np.array([str(-1), str(2**63)], dtype=object),
],
)
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
def test_convert_numeric_int64_uint64(
self, case, coerce, convert_to_masked_nullable
):
expected = case.astype(float) if coerce else case.copy()
result, _ = lib.maybe_convert_numeric(
case,
set(),
coerce_numeric=coerce,
convert_to_masked_nullable=convert_to_masked_nullable,
)
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize("convert_to_masked_nullable", [True, False])
def test_convert_numeric_string_uint64(self, convert_to_masked_nullable):
# GH32394
result = lib.maybe_convert_numeric(
np.array(["uint64"], dtype=object),
set(),
coerce_numeric=True,
convert_to_masked_nullable=convert_to_masked_nullable,
)
if convert_to_masked_nullable:
result = FloatingArray(*result)
else:
result = result[0]
assert np.isnan(result)
@pytest.mark.parametrize("value", [-(2**63) - 1, 2**64])
def test_convert_int_overflow(self, value):
# see gh-18584
arr = np.array([value], dtype=object)
result = lib.maybe_convert_objects(arr)
tm.assert_numpy_array_equal(arr, result)
@pytest.mark.parametrize("val", [None, np.nan, float("nan")])
@pytest.mark.parametrize("dtype", ["M8[ns]", "m8[ns]"])
def test_maybe_convert_objects_nat_inference(self, val, dtype):
dtype = np.dtype(dtype)
vals = np.array([pd.NaT, val], dtype=object)
result = lib.maybe_convert_objects(
vals,
convert_non_numeric=True,
dtype_if_all_nat=dtype,
)
assert result.dtype == dtype
assert np.isnat(result).all()
result = lib.maybe_convert_objects(
vals[::-1],
convert_non_numeric=True,
dtype_if_all_nat=dtype,
)
assert result.dtype == dtype
assert np.isnat(result).all()
@pytest.mark.parametrize(
"value, expected_dtype",
[
# see gh-4471
([2**63], np.uint64),
# NumPy bug: can't compare uint64 to int64, as that
# results in both casting to float64, so we should
# make sure that this function is robust against it
([np.uint64(2**63)], np.uint64),
([2, -1], np.int64),
([2**63, -1], object),
# GH#47294
([np.uint8(1)], np.uint8),
([np.uint16(1)], np.uint16),
([np.uint32(1)], np.uint32),
([np.uint64(1)], np.uint64),
([np.uint8(2), np.uint16(1)], np.uint16),
([np.uint32(2), np.uint16(1)], np.uint32),
([np.uint32(2), -1], object),
([np.uint32(2), 1], np.uint64),
([np.uint32(2), np.int32(1)], object),
],
)
def test_maybe_convert_objects_uint(self, value, expected_dtype):
arr = np.array(value, dtype=object)
exp = np.array(value, dtype=expected_dtype)
tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp)
def test_maybe_convert_objects_datetime(self):
# GH27438
arr = np.array(
[np.datetime64("2000-01-01"), np.timedelta64(1, "s")], dtype=object
)
exp = arr.copy()
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
tm.assert_numpy_array_equal(out, exp)
arr = np.array([pd.NaT, np.timedelta64(1, "s")], dtype=object)
exp = np.array([np.timedelta64("NaT"), np.timedelta64(1, "s")], dtype="m8[ns]")
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
tm.assert_numpy_array_equal(out, exp)
# with convert_non_numeric=True, the nan is a valid NA value for td64
arr = np.array([np.timedelta64(1, "s"), np.nan], dtype=object)
exp = exp[::-1]
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
tm.assert_numpy_array_equal(out, exp)
def test_maybe_convert_objects_dtype_if_all_nat(self):
arr = np.array([pd.NaT, pd.NaT], dtype=object)
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
# no dtype_if_all_nat passed -> we dont guess
tm.assert_numpy_array_equal(out, arr)
out = lib.maybe_convert_objects(
arr,
convert_non_numeric=True,
dtype_if_all_nat=np.dtype("timedelta64[ns]"),
)
exp = np.array(["NaT", "NaT"], dtype="timedelta64[ns]")
tm.assert_numpy_array_equal(out, exp)
out = lib.maybe_convert_objects(
arr,
convert_non_numeric=True,
dtype_if_all_nat=np.dtype("datetime64[ns]"),
)
exp = np.array(["NaT", "NaT"], dtype="datetime64[ns]")
tm.assert_numpy_array_equal(out, exp)
def test_maybe_convert_objects_dtype_if_all_nat_invalid(self):
# we accept datetime64[ns], timedelta64[ns], and EADtype
arr = np.array([pd.NaT, pd.NaT], dtype=object)
with pytest.raises(ValueError, match="int64"):
lib.maybe_convert_objects(
arr,
convert_non_numeric=True,
dtype_if_all_nat=np.dtype("int64"),
)
@pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
def test_maybe_convert_objects_datetime_overflow_safe(self, dtype):
stamp = datetime(2363, 10, 4) # Enterprise-D launch date
if dtype == "timedelta64[ns]":
stamp = stamp - datetime(1970, 1, 1)
arr = np.array([stamp], dtype=object)
out = lib.maybe_convert_objects(arr, convert_non_numeric=True)
# no OutOfBoundsDatetime/OutOfBoundsTimedeltas
tm.assert_numpy_array_equal(out, arr)
def test_maybe_convert_objects_mixed_datetimes(self):
ts = Timestamp("now")
vals = [ts, ts.to_pydatetime(), ts.to_datetime64(), pd.NaT, np.nan, None]
for data in itertools.permutations(vals):
data = np.array(list(data), dtype=object)
expected = DatetimeIndex(data)._data._ndarray
result = lib.maybe_convert_objects(data, convert_non_numeric=True)
tm.assert_numpy_array_equal(result, expected)
def test_maybe_convert_objects_timedelta64_nat(self):
obj = np.timedelta64("NaT", "ns")
arr = np.array([obj], dtype=object)
assert arr[0] is obj
result = lib.maybe_convert_objects(arr, convert_non_numeric=True)
expected = np.array([obj], dtype="m8[ns]")
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"exp",
[
IntegerArray(np.array([2, 0], dtype="i8"), np.array([False, True])),
IntegerArray(np.array([2, 0], dtype="int64"), np.array([False, True])),
],
)
def test_maybe_convert_objects_nullable_integer(self, exp):
# GH27335
arr = np.array([2, np.nan], dtype=object)
result = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
tm.assert_extension_array_equal(result, exp)
@pytest.mark.parametrize(
"dtype, val", [("int64", 1), ("uint64", np.iinfo(np.int64).max + 1)]
)
def test_maybe_convert_objects_nullable_none(self, dtype, val):
# GH#50043
arr = np.array([val, None, 3], dtype="object")
result = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
expected = IntegerArray(
np.array([val, 0, 3], dtype=dtype), np.array([False, True, False])
)
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize(
"convert_to_masked_nullable, exp",
[
(True, IntegerArray(np.array([2, 0], dtype="i8"), np.array([False, True]))),
(False, np.array([2, np.nan], dtype="float64")),
],
)
def test_maybe_convert_numeric_nullable_integer(
self, convert_to_masked_nullable, exp
):
# GH 40687
arr = np.array([2, np.nan], dtype=object)
result = lib.maybe_convert_numeric(
arr, set(), convert_to_masked_nullable=convert_to_masked_nullable
)
if convert_to_masked_nullable:
result = IntegerArray(*result)
tm.assert_extension_array_equal(result, exp)
else:
result = result[0]
tm.assert_numpy_array_equal(result, exp)
@pytest.mark.parametrize(
"convert_to_masked_nullable, exp",
[
(
True,
FloatingArray(
np.array([2.0, 0.0], dtype="float64"), np.array([False, True])
),
),
(False, np.array([2.0, np.nan], dtype="float64")),
],
)
def test_maybe_convert_numeric_floating_array(
self, convert_to_masked_nullable, exp
):
# GH 40687
arr = np.array([2.0, np.nan], dtype=object)
result = lib.maybe_convert_numeric(
arr, set(), convert_to_masked_nullable=convert_to_masked_nullable
)
if convert_to_masked_nullable:
tm.assert_extension_array_equal(FloatingArray(*result), exp)
else:
result = result[0]
tm.assert_numpy_array_equal(result, exp)
def test_maybe_convert_objects_bool_nan(self):
# GH32146
ind = Index([True, False, np.nan], dtype=object)
exp = np.array([True, False, np.nan], dtype=object)
out = lib.maybe_convert_objects(ind.values, safe=1)
tm.assert_numpy_array_equal(out, exp)
def test_maybe_convert_objects_nullable_boolean(self):
# GH50047
arr = np.array([True, False], dtype=object)
exp = np.array([True, False])
out = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
tm.assert_numpy_array_equal(out, exp)
arr = np.array([True, False, pd.NaT], dtype=object)
exp = np.array([True, False, pd.NaT], dtype=object)
out = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
tm.assert_numpy_array_equal(out, exp)
@pytest.mark.parametrize("val", [None, np.nan])
def test_maybe_convert_objects_nullable_boolean_na(self, val):
# GH50047
arr = np.array([True, False, val], dtype=object)
exp = BooleanArray(
np.array([True, False, False]), np.array([False, False, True])
)
out = lib.maybe_convert_objects(arr, convert_to_nullable_dtype=True)
tm.assert_extension_array_equal(out, exp)
@pytest.mark.parametrize(
"data0",
[
True,
1,
1.0,
1.0 + 1.0j,
np.int8(1),
np.int16(1),
np.int32(1),
np.int64(1),
np.float16(1),
np.float32(1),
np.float64(1),
np.complex64(1),
np.complex128(1),
],
)
@pytest.mark.parametrize(
"data1",
[
True,
1,
1.0,
1.0 + 1.0j,
np.int8(1),
np.int16(1),
np.int32(1),
np.int64(1),
np.float16(1),
np.float32(1),
np.float64(1),
np.complex64(1),
np.complex128(1),
],
)
def test_maybe_convert_objects_itemsize(self, data0, data1):
# GH 40908
data = [data0, data1]
arr = np.array(data, dtype="object")
common_kind = np.result_type(type(data0), type(data1)).kind
kind0 = "python" if not hasattr(data0, "dtype") else data0.dtype.kind
kind1 = "python" if not hasattr(data1, "dtype") else data1.dtype.kind
if kind0 != "python" and kind1 != "python":
kind = common_kind
itemsize = max(data0.dtype.itemsize, data1.dtype.itemsize)
elif is_bool(data0) or is_bool(data1):
kind = "bool" if (is_bool(data0) and is_bool(data1)) else "object"
itemsize = ""
elif is_complex(data0) or is_complex(data1):
kind = common_kind
itemsize = 16
else:
kind = common_kind
itemsize = 8
expected = np.array(data, dtype=f"{kind}{itemsize}")
result = lib.maybe_convert_objects(arr)
tm.assert_numpy_array_equal(result, expected)
def test_mixed_dtypes_remain_object_array(self):
# GH14956
arr = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object)
result = lib.maybe_convert_objects(arr, convert_non_numeric=True)
tm.assert_numpy_array_equal(result, arr)
@pytest.mark.parametrize(
"idx",
[
pd.IntervalIndex.from_breaks(range(5), closed="both"),
pd.period_range("2016-01-01", periods=3, freq="D"),
],
)
def test_maybe_convert_objects_ea(self, idx):
result = lib.maybe_convert_objects(
np.array(idx, dtype=object),
convert_non_numeric=True,
)
tm.assert_extension_array_equal(result, idx._data)
class TestTypeInference:
# Dummy class used for testing with Python objects
class Dummy:
pass
def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype):
# see pandas/conftest.py
inferred_dtype, values = any_skipna_inferred_dtype
# make sure the inferred dtype of the fixture is as requested
assert inferred_dtype == lib.infer_dtype(values, skipna=True)
@pytest.mark.parametrize("skipna", [True, False])
def test_length_zero(self, skipna):
result = lib.infer_dtype(np.array([], dtype="i4"), skipna=skipna)
assert result == "integer"
result = lib.infer_dtype([], skipna=skipna)
assert result == "empty"
# GH 18004
arr = np.array([np.array([], dtype=object), np.array([], dtype=object)])
result = lib.infer_dtype(arr, skipna=skipna)
assert result == "empty"
def test_integers(self):
arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype="O")
result = lib.infer_dtype(arr, skipna=True)
assert result == "integer"
arr = np.array([1, 2, 3, np.int64(4), np.int32(5), "foo"], dtype="O")
result = lib.infer_dtype(arr, skipna=True)
assert result == "mixed-integer"
arr = np.array([1, 2, 3, 4, 5], dtype="i4")
result = lib.infer_dtype(arr, skipna=True)
assert result == "integer"
@pytest.mark.parametrize(
"arr, skipna",
[
(np.array([1, 2, np.nan, np.nan, 3], dtype="O"), False),
(np.array([1, 2, np.nan, np.nan, 3], dtype="O"), True),
(np.array([1, 2, 3, np.int64(4), np.int32(5), np.nan], dtype="O"), False),
(np.array([1, 2, 3, np.int64(4), np.int32(5), np.nan], dtype="O"), True),
],
)
def test_integer_na(self, arr, skipna):
# GH 27392
result = lib.infer_dtype(arr, skipna=skipna)
expected = "integer" if skipna else "integer-na"
assert result == expected
def test_infer_dtype_skipna_default(self):
# infer_dtype `skipna` default deprecated in GH#24050,
# changed to True in GH#29876
arr = np.array([1, 2, 3, np.nan], dtype=object)
result = lib.infer_dtype(arr)
assert result == "integer"
def test_bools(self):
arr = np.array([True, False, True, True, True], dtype="O")
result = lib.infer_dtype(arr, skipna=True)
assert result == "boolean"
arr = np.array([np.bool_(True), np.bool_(False)], dtype="O")
result = lib.infer_dtype(arr, skipna=True)
assert result == "boolean"
arr = np.array([True, False, True, "foo"], dtype="O")
result = lib.infer_dtype(arr, skipna=True)
assert result == "mixed"
arr = np.array([True, False, True], dtype=bool)
result = lib.infer_dtype(arr, skipna=True)
assert result == "boolean"
arr = np.array([True, np.nan, False], dtype="O")
result = lib.infer_dtype(arr, skipna=True)
assert result == "boolean"
result = lib.infer_dtype(arr, skipna=False)
assert result == "mixed"
def test_floats(self):
arr = np.array([1.0, 2.0, 3.0, np.float64(4), np.float32(5)], dtype="O")
result = lib.infer_dtype(arr, skipna=True)
assert result == "floating"
arr = np.array([1, 2, 3, np.float64(4), np.float32(5), "foo"], dtype="O")
result = lib.infer_dtype(arr, skipna=True)
assert result == "mixed-integer"
arr = np.array([1, 2, 3, 4, 5], dtype="f4")
result = lib.infer_dtype(arr, skipna=True)
assert result == "floating"
arr = np.array([1, 2, 3, 4, 5], dtype="f8")
result = lib.infer_dtype(arr, skipna=True)
assert result == "floating"
def test_decimals(self):
# GH15690
arr = np.array([Decimal(1), Decimal(2), Decimal(3)])
result = lib.infer_dtype(arr, skipna=True)
assert result == "decimal"
arr = np.array([1.0, 2.0, Decimal(3)])
result = lib.infer_dtype(arr, skipna=True)
assert result == "mixed"
result = lib.infer_dtype(arr[::-1], skipna=True)
assert result == "mixed"
arr = np.array([Decimal(1), Decimal("NaN"), Decimal(3)])
result = lib.infer_dtype(arr, skipna=True)
assert result == "decimal"
arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype="O")
result = lib.infer_dtype(arr, skipna=True)
assert result == "decimal"
# complex is compatible with nan, so skipna has no effect
@pytest.mark.parametrize("skipna", [True, False])
def test_complex(self, skipna):
# gets cast to complex on array construction
arr = np.array([1.0, 2.0, 1 + 1j])
result = lib.infer_dtype(arr, skipna=skipna)
assert result == "complex"
arr = np.array([1.0, 2.0, 1 + 1j], dtype="O")
result = lib.infer_dtype(arr, skipna=skipna)
assert result == "mixed"
result = lib.infer_dtype(arr[::-1], skipna=skipna)
assert result == "mixed"
# gets cast to complex on array construction
arr = np.array([1, np.nan, 1 + 1j])
result = lib.infer_dtype(arr, skipna=skipna)
assert result == "complex"
arr = np.array([1.0, np.nan, 1 + 1j], dtype="O")
result = lib.infer_dtype(arr, skipna=skipna)
assert result == "mixed"
# complex with nans stays complex
arr = np.array([1 + 1j, np.nan, 3 + 3j], dtype="O")
result = lib.infer_dtype(arr, skipna=skipna)
assert result == "complex"
# test smaller complex dtype; will pass through _try_infer_map fastpath
arr = np.array([1 + 1j, np.nan, 3 + 3j], dtype=np.complex64)
result = lib.infer_dtype(arr, skipna=skipna)
assert result == "complex"
def test_string(self):
pass
def test_unicode(self):
arr = ["a", np.nan, "c"]
result = lib.infer_dtype(arr, skipna=False)
# This currently returns "mixed", but it's not clear that's optimal.
# This could also return "string" or "mixed-string"
assert result == "mixed"
# even though we use skipna, we are only skipping those NAs that are
# considered matching by is_string_array
arr = ["a", np.nan, "c"]
result = lib.infer_dtype(arr, skipna=True)
assert result == "string"
arr = ["a", pd.NA, "c"]
result = lib.infer_dtype(arr, skipna=True)
assert result == "string"
arr = ["a", pd.NaT, "c"]
result = lib.infer_dtype(arr, skipna=True)
assert result == "mixed"
arr = ["a", "c"]
result = lib.infer_dtype(arr, skipna=False)
assert result == "string"
@pytest.mark.parametrize(
"dtype, missing, skipna, expected",
[
(float, np.nan, False, "floating"),
(float, np.nan, True, "floating"),
(object, np.nan, False, "floating"),
(object, np.nan, True, "empty"),
(object, None, False, "mixed"),
(object, None, True, "empty"),
],
)
@pytest.mark.parametrize("box", [Series, np.array])
def test_object_empty(self, box, missing, dtype, skipna, expected):
# GH 23421
arr = box([missing, missing], dtype=dtype)
result = lib.infer_dtype(arr, skipna=skipna)
assert result == expected
def test_datetime(self):
dates = [datetime(2012, 1, x) for x in range(1, 20)]
index = Index(dates)
assert index.inferred_type == "datetime64"
def test_infer_dtype_datetime64(self):
arr = np.array(
[np.datetime64("2011-01-01"), np.datetime64("2011-01-01")], dtype=object
)
assert lib.infer_dtype(arr, skipna=True) == "datetime64"
@pytest.mark.parametrize("na_value", [pd.NaT, np.nan])
def test_infer_dtype_datetime64_with_na(self, na_value):
# starts with nan
arr = np.array([na_value, np.datetime64("2011-01-02")])
assert lib.infer_dtype(arr, skipna=True) == "datetime64"
arr = np.array([na_value, np.datetime64("2011-01-02"), na_value])
assert lib.infer_dtype(arr, skipna=True) == "datetime64"
@pytest.mark.parametrize(
"arr",
[
np.array(
[np.timedelta64("nat"), np.datetime64("2011-01-02")], dtype=object
),
np.array(
[np.datetime64("2011-01-02"), np.timedelta64("nat")], dtype=object
),
np.array([np.datetime64("2011-01-01"), Timestamp("2011-01-02")]),
np.array([Timestamp("2011-01-02"), np.datetime64("2011-01-01")]),
np.array([np.nan, Timestamp("2011-01-02"), 1.1]),
np.array([np.nan, "2011-01-01", Timestamp("2011-01-02")], dtype=object),
np.array([np.datetime64("nat"), np.timedelta64(1, "D")], dtype=object),
np.array([np.timedelta64(1, "D"), np.datetime64("nat")], dtype=object),
],
)
def test_infer_datetimelike_dtype_mixed(self, arr):
assert lib.infer_dtype(arr, skipna=False) == "mixed"
def test_infer_dtype_mixed_integer(self):
arr = np.array([np.nan, Timestamp("2011-01-02"), 1])
assert lib.infer_dtype(arr, skipna=True) == "mixed-integer"
@pytest.mark.parametrize(
"arr",
[
np.array([Timestamp("2011-01-01"), Timestamp("2011-01-02")]),
np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]),
np.array([datetime(2011, 1, 1), Timestamp("2011-01-02")]),
],
)
def test_infer_dtype_datetime(self, arr):
assert lib.infer_dtype(arr, skipna=True) == "datetime"
@pytest.mark.parametrize("na_value", [pd.NaT, np.nan])
@pytest.mark.parametrize(
"time_stamp", [Timestamp("2011-01-01"), datetime(2011, 1, 1)]
)
def test_infer_dtype_datetime_with_na(self, na_value, time_stamp):
# starts with nan
arr = np.array([na_value, time_stamp])
assert lib.infer_dtype(arr, skipna=True) == "datetime"
arr = np.array([na_value, time_stamp, na_value])
assert lib.infer_dtype(arr, skipna=True) == "datetime"
@pytest.mark.parametrize(
"arr",
[
np.array([Timedelta("1 days"), Timedelta("2 days")]),
np.array([np.timedelta64(1, "D"), np.timedelta64(2, "D")], dtype=object),
np.array([timedelta(1), timedelta(2)]),
],
)
def test_infer_dtype_timedelta(self, arr):
assert lib.infer_dtype(arr, skipna=True) == "timedelta"
@pytest.mark.parametrize("na_value", [pd.NaT, np.nan])
@pytest.mark.parametrize(
"delta", [Timedelta("1 days"), np.timedelta64(1, "D"), timedelta(1)]
)
def test_infer_dtype_timedelta_with_na(self, na_value, delta):
# starts with nan
arr = np.array([na_value, delta])
assert lib.infer_dtype(arr, skipna=True) == "timedelta"
arr = np.array([na_value, delta, na_value])
assert lib.infer_dtype(arr, skipna=True) == "timedelta"
def test_infer_dtype_period(self):
# GH 13664
arr = np.array([Period("2011-01", freq="D"), Period("2011-02", freq="D")])
assert lib.infer_dtype(arr, skipna=True) == "period"
# non-homogeneous freqs -> mixed
arr = np.array([Period("2011-01", freq="D"), Period("2011-02", freq="M")])
assert lib.infer_dtype(arr, skipna=True) == "mixed"
@pytest.mark.parametrize("klass", [pd.array, Series, Index])
@pytest.mark.parametrize("skipna", [True, False])
def test_infer_dtype_period_array(self, klass, skipna):
# https://github.com/pandas-dev/pandas/issues/23553
values = klass(
[
Period("2011-01-01", freq="D"),
Period("2011-01-02", freq="D"),
pd.NaT,
]
)
assert lib.infer_dtype(values, skipna=skipna) == "period"
# periods but mixed freq
values = klass(
[
Period("2011-01-01", freq="D"),
Period("2011-01-02", freq="M"),
pd.NaT,
]
)
# with pd.array this becomes NumpyExtensionArray which ends up
# as "unknown-array"
exp = "unknown-array" if klass is pd.array else "mixed"
assert lib.infer_dtype(values, skipna=skipna) == exp
def test_infer_dtype_period_mixed(self):
arr = np.array(
[Period("2011-01", freq="M"), np.datetime64("nat")], dtype=object
)
assert lib.infer_dtype(arr, skipna=False) == "mixed"
arr = np.array(
[np.datetime64("nat"), Period("2011-01", freq="M")], dtype=object
)
assert lib.infer_dtype(arr, skipna=False) == "mixed"
@pytest.mark.parametrize("na_value", [pd.NaT, np.nan])
def test_infer_dtype_period_with_na(self, na_value):
# starts with nan
arr = np.array([na_value, Period("2011-01", freq="D")])
assert lib.infer_dtype(arr, skipna=True) == "period"
arr = np.array([na_value, Period("2011-01", freq="D"), na_value])
assert lib.infer_dtype(arr, skipna=True) == "period"
def test_infer_dtype_all_nan_nat_like(self):
arr = np.array([np.nan, np.nan])
assert lib.infer_dtype(arr, skipna=True) == "floating"
# nan and None mix are result in mixed
arr = np.array([np.nan, np.nan, None])
assert lib.infer_dtype(arr, skipna=True) == "empty"
assert lib.infer_dtype(arr, skipna=False) == "mixed"
arr = np.array([None, np.nan, np.nan])
assert lib.infer_dtype(arr, skipna=True) == "empty"
assert lib.infer_dtype(arr, skipna=False) == "mixed"
# pd.NaT
arr = np.array([pd.NaT])
assert lib.infer_dtype(arr, skipna=False) == "datetime"
arr = np.array([pd.NaT, np.nan])
assert lib.infer_dtype(arr, skipna=False) == "datetime"
arr = np.array([np.nan, pd.NaT])
assert lib.infer_dtype(arr, skipna=False) == "datetime"
arr = np.array([np.nan, pd.NaT, np.nan])
assert lib.infer_dtype(arr, skipna=False) == "datetime"
arr = np.array([None, pd.NaT, None])
assert lib.infer_dtype(arr, skipna=False) == "datetime"
# np.datetime64(nat)
arr = np.array([np.datetime64("nat")])
assert lib.infer_dtype(arr, skipna=False) == "datetime64"
for n in [np.nan, pd.NaT, None]:
arr = np.array([n, np.datetime64("nat"), n])
assert lib.infer_dtype(arr, skipna=False) == "datetime64"
arr = np.array([pd.NaT, n, np.datetime64("nat"), n])
assert lib.infer_dtype(arr, skipna=False) == "datetime64"
arr = np.array([np.timedelta64("nat")], dtype=object)
assert lib.infer_dtype(arr, skipna=False) == "timedelta"
for n in [np.nan, pd.NaT, None]:
arr = np.array([n, np.timedelta64("nat"), n])
assert lib.infer_dtype(arr, skipna=False) == "timedelta"
arr = np.array([pd.NaT, n, np.timedelta64("nat"), n])
assert lib.infer_dtype(arr, skipna=False) == "timedelta"
# datetime / timedelta mixed
arr = np.array([pd.NaT, np.datetime64("nat"), np.timedelta64("nat"), np.nan])
assert lib.infer_dtype(arr, skipna=False) == "mixed"
arr = np.array([np.timedelta64("nat"), np.datetime64("nat")], dtype=object)
assert lib.infer_dtype(arr, skipna=False) == "mixed"
def test_is_datetimelike_array_all_nan_nat_like(self):
arr = np.array([np.nan, pd.NaT, np.datetime64("nat")])
assert lib.is_datetime_array(arr)
assert lib.is_datetime64_array(arr)
assert not lib.is_timedelta_or_timedelta64_array(arr)
arr = np.array([np.nan, pd.NaT, np.timedelta64("nat")])
assert not lib.is_datetime_array(arr)
assert not lib.is_datetime64_array(arr)
assert lib.is_timedelta_or_timedelta64_array(arr)
arr = np.array([np.nan, pd.NaT, np.datetime64("nat"), np.timedelta64("nat")])
assert not lib.is_datetime_array(arr)
assert not lib.is_datetime64_array(arr)
assert not lib.is_timedelta_or_timedelta64_array(arr)
arr = np.array([np.nan, pd.NaT])
assert lib.is_datetime_array(arr)
assert lib.is_datetime64_array(arr)
assert lib.is_timedelta_or_timedelta64_array(arr)
arr = np.array([np.nan, np.nan], dtype=object)
assert not lib.is_datetime_array(arr)
assert not lib.is_datetime64_array(arr)
assert not lib.is_timedelta_or_timedelta64_array(arr)
assert lib.is_datetime_with_singletz_array(
np.array(
[
Timestamp("20130101", tz="US/Eastern"),
Timestamp("20130102", tz="US/Eastern"),
],
dtype=object,
)
)
assert not lib.is_datetime_with_singletz_array(
np.array(
[
Timestamp("20130101", tz="US/Eastern"),
Timestamp("20130102", tz="CET"),
],
dtype=object,
)
)
@pytest.mark.parametrize(
"func",
[
"is_datetime_array",
"is_datetime64_array",
"is_bool_array",
"is_timedelta_or_timedelta64_array",
"is_date_array",
"is_time_array",
"is_interval_array",
],
)
def test_other_dtypes_for_array(self, func):
func = getattr(lib, func)
arr = np.array(["foo", "bar"])
assert not func(arr)
assert not func(arr.reshape(2, 1))
arr = np.array([1, 2])
assert not func(arr)
assert not func(arr.reshape(2, 1))
def test_date(self):
dates = [date(2012, 1, day) for day in range(1, 20)]
index = Index(dates)
assert index.inferred_type == "date"
dates = [date(2012, 1, day) for day in range(1, 20)] + [np.nan]
result = lib.infer_dtype(dates, skipna=False)
assert result == "mixed"
result = lib.infer_dtype(dates, skipna=True)
assert result == "date"
@pytest.mark.parametrize(
"values",
[
[date(2020, 1, 1), Timestamp("2020-01-01")],
[Timestamp("2020-01-01"), date(2020, 1, 1)],
[date(2020, 1, 1), pd.NaT],
[pd.NaT, date(2020, 1, 1)],
],
)
@pytest.mark.parametrize("skipna", [True, False])
def test_infer_dtype_date_order_invariant(self, values, skipna):
# https://github.com/pandas-dev/pandas/issues/33741
result = lib.infer_dtype(values, skipna=skipna)
assert result == "date"
def test_is_numeric_array(self):
assert lib.is_float_array(np.array([1, 2.0]))
assert lib.is_float_array(np.array([1, 2.0, np.nan]))
assert not lib.is_float_array(np.array([1, 2]))
assert lib.is_integer_array(np.array([1, 2]))
assert not lib.is_integer_array(np.array([1, 2.0]))
def test_is_string_array(self):
# We should only be accepting pd.NA, np.nan,
# other floating point nans e.g. float('nan')]
# when skipna is True.
assert lib.is_string_array(np.array(["foo", "bar"]))
assert not lib.is_string_array(
np.array(["foo", "bar", pd.NA], dtype=object), skipna=False
)
assert lib.is_string_array(
np.array(["foo", "bar", pd.NA], dtype=object), skipna=True
)
# we allow NaN/None in the StringArray constructor, so its allowed here
assert lib.is_string_array(
np.array(["foo", "bar", None], dtype=object), skipna=True
)
assert lib.is_string_array(
np.array(["foo", "bar", np.nan], dtype=object), skipna=True
)
# But not e.g. datetimelike or Decimal NAs
assert not lib.is_string_array(
np.array(["foo", "bar", pd.NaT], dtype=object), skipna=True
)
assert not lib.is_string_array(
np.array(["foo", "bar", np.datetime64("NaT")], dtype=object), skipna=True
)
assert not lib.is_string_array(
np.array(["foo", "bar", Decimal("NaN")], dtype=object), skipna=True
)
assert not lib.is_string_array(
np.array(["foo", "bar", None], dtype=object), skipna=False
)
assert not lib.is_string_array(
np.array(["foo", "bar", np.nan], dtype=object), skipna=False
)
assert not lib.is_string_array(np.array([1, 2]))
def test_to_object_array_tuples(self):
r = (5, 6)
values = [r]
lib.to_object_array_tuples(values)
# make sure record array works
record = namedtuple("record", "x y")
r = record(5, 6)
values = [r]
lib.to_object_array_tuples(values)
def test_object(self):
# GH 7431
# cannot infer more than this as only a single element
arr = np.array([None], dtype="O")
result = lib.infer_dtype(arr, skipna=False)
assert result == "mixed"
result = lib.infer_dtype(arr, skipna=True)
assert result == "empty"
def test_to_object_array_width(self):
# see gh-13320
rows = [[1, 2, 3], [4, 5, 6]]
expected = np.array(rows, dtype=object)
out = lib.to_object_array(rows)
tm.assert_numpy_array_equal(out, expected)
expected = np.array(rows, dtype=object)
out = lib.to_object_array(rows, min_width=1)
tm.assert_numpy_array_equal(out, expected)
expected = np.array(
[[1, 2, 3, None, None], [4, 5, 6, None, None]], dtype=object
)
out = lib.to_object_array(rows, min_width=5)
tm.assert_numpy_array_equal(out, expected)
def test_is_period(self):
# GH#55264
msg = "is_period is deprecated and will be removed in a future version"
with tm.assert_produces_warning(FutureWarning, match=msg):
assert lib.is_period(Period("2011-01", freq="M"))
assert not lib.is_period(PeriodIndex(["2011-01"], freq="M"))
assert not lib.is_period(Timestamp("2011-01"))
assert not lib.is_period(1)
assert not lib.is_period(np.nan)
def test_is_interval(self):
# GH#55264
msg = "is_interval is deprecated and will be removed in a future version"
item = Interval(1, 2)
with tm.assert_produces_warning(FutureWarning, match=msg):
assert lib.is_interval(item)
assert not lib.is_interval(pd.IntervalIndex([item]))
assert not lib.is_interval(pd.IntervalIndex([item])._engine)
def test_categorical(self):
# GH 8974
arr = Categorical(list("abc"))
result = lib.infer_dtype(arr, skipna=True)
assert result == "categorical"
result = lib.infer_dtype(Series(arr), skipna=True)
assert result == "categorical"
arr = Categorical(list("abc"), categories=["cegfab"], ordered=True)
result = lib.infer_dtype(arr, skipna=True)
assert result == "categorical"
result = lib.infer_dtype(Series(arr), skipna=True)
assert result == "categorical"
@pytest.mark.parametrize("asobject", [True, False])
def test_interval(self, asobject):
idx = pd.IntervalIndex.from_breaks(range(5), closed="both")
if asobject:
idx = idx.astype(object)
inferred = lib.infer_dtype(idx, skipna=False)
assert inferred == "interval"
inferred = lib.infer_dtype(idx._data, skipna=False)
assert inferred == "interval"
inferred = lib.infer_dtype(Series(idx, dtype=idx.dtype), skipna=False)
assert inferred == "interval"
@pytest.mark.parametrize("value", [Timestamp(0), Timedelta(0), 0, 0.0])
def test_interval_mismatched_closed(self, value):
first = Interval(value, value, closed="left")
second = Interval(value, value, closed="right")
# if closed match, we should infer "interval"
arr = np.array([first, first], dtype=object)
assert lib.infer_dtype(arr, skipna=False) == "interval"
# if closed dont match, we should _not_ get "interval"
arr2 = np.array([first, second], dtype=object)
assert lib.infer_dtype(arr2, skipna=False) == "mixed"
def test_interval_mismatched_subtype(self):
first = Interval(0, 1, closed="left")
second = Interval(Timestamp(0), Timestamp(1), closed="left")
third = Interval(Timedelta(0), Timedelta(1), closed="left")
arr = np.array([first, second])
assert lib.infer_dtype(arr, skipna=False) == "mixed"
arr = np.array([second, third])
assert lib.infer_dtype(arr, skipna=False) == "mixed"
arr = np.array([first, third])
assert lib.infer_dtype(arr, skipna=False) == "mixed"
# float vs int subdtype are compatible
flt_interval = Interval(1.5, 2.5, closed="left")
arr = np.array([first, flt_interval], dtype=object)
assert lib.infer_dtype(arr, skipna=False) == "interval"
@pytest.mark.parametrize("klass", [pd.array, Series])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("data", [["a", "b", "c"], ["a", "b", pd.NA]])
def test_string_dtype(self, data, skipna, klass, nullable_string_dtype):
# StringArray
val = klass(data, dtype=nullable_string_dtype)
inferred = lib.infer_dtype(val, skipna=skipna)
assert inferred == "string"
@pytest.mark.parametrize("klass", [pd.array, Series])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("data", [[True, False, True], [True, False, pd.NA]])
def test_boolean_dtype(self, data, skipna, klass):
# BooleanArray
val = klass(data, dtype="boolean")
inferred = lib.infer_dtype(val, skipna=skipna)
assert inferred == "boolean"
class TestNumberScalar:
def test_is_number(self):
assert is_number(True)
assert is_number(1)
assert is_number(1.1)
assert is_number(1 + 3j)
assert is_number(np.int64(1))
assert is_number(np.float64(1.1))
assert is_number(np.complex128(1 + 3j))
assert is_number(np.nan)
assert not is_number(None)
assert not is_number("x")
assert not is_number(datetime(2011, 1, 1))
assert not is_number(np.datetime64("2011-01-01"))
assert not is_number(Timestamp("2011-01-01"))
assert not is_number(Timestamp("2011-01-01", tz="US/Eastern"))
assert not is_number(timedelta(1000))
assert not is_number(Timedelta("1 days"))
# questionable
assert not is_number(np.bool_(False))
assert is_number(np.timedelta64(1, "D"))
def test_is_bool(self):
assert is_bool(True)
assert is_bool(False)
assert is_bool(np.bool_(False))
assert not is_bool(1)
assert not is_bool(1.1)
assert not is_bool(1 + 3j)
assert not is_bool(np.int64(1))
assert not is_bool(np.float64(1.1))
assert not is_bool(np.complex128(1 + 3j))
assert not is_bool(np.nan)
assert not is_bool(None)
assert not is_bool("x")
assert not is_bool(datetime(2011, 1, 1))
assert not is_bool(np.datetime64("2011-01-01"))
assert not is_bool(Timestamp("2011-01-01"))
assert not is_bool(Timestamp("2011-01-01", tz="US/Eastern"))
assert not is_bool(timedelta(1000))
assert not is_bool(np.timedelta64(1, "D"))
assert not is_bool(Timedelta("1 days"))
def test_is_integer(self):
assert is_integer(1)
assert is_integer(np.int64(1))
assert not is_integer(True)
assert not is_integer(1.1)
assert not is_integer(1 + 3j)
assert not is_integer(False)
assert not is_integer(np.bool_(False))
assert not is_integer(np.float64(1.1))
assert not is_integer(np.complex128(1 + 3j))
assert not is_integer(np.nan)
assert not is_integer(None)
assert not is_integer("x")
assert not is_integer(datetime(2011, 1, 1))
assert not is_integer(np.datetime64("2011-01-01"))
assert not is_integer(Timestamp("2011-01-01"))
assert not is_integer(Timestamp("2011-01-01", tz="US/Eastern"))
assert not is_integer(timedelta(1000))
assert not is_integer(Timedelta("1 days"))
assert not is_integer(np.timedelta64(1, "D"))
def test_is_float(self):
assert is_float(1.1)
assert is_float(np.float64(1.1))
assert is_float(np.nan)
assert not is_float(True)
assert not is_float(1)
assert not is_float(1 + 3j)
assert not is_float(False)
assert not is_float(np.bool_(False))
assert not is_float(np.int64(1))
assert not is_float(np.complex128(1 + 3j))
assert not is_float(None)
assert not is_float("x")
assert not is_float(datetime(2011, 1, 1))
assert not is_float(np.datetime64("2011-01-01"))
assert not is_float(Timestamp("2011-01-01"))
assert not is_float(Timestamp("2011-01-01", tz="US/Eastern"))
assert not is_float(timedelta(1000))
assert not is_float(np.timedelta64(1, "D"))
assert not is_float(Timedelta("1 days"))
def test_is_datetime_dtypes(self):
ts = pd.date_range("20130101", periods=3)
tsa = pd.date_range("20130101", periods=3, tz="US/Eastern")
msg = "is_datetime64tz_dtype is deprecated"
assert is_datetime64_dtype("datetime64")
assert is_datetime64_dtype("datetime64[ns]")
assert is_datetime64_dtype(ts)
assert not is_datetime64_dtype(tsa)
assert not is_datetime64_ns_dtype("datetime64")
assert is_datetime64_ns_dtype("datetime64[ns]")
assert is_datetime64_ns_dtype(ts)
assert is_datetime64_ns_dtype(tsa)
assert is_datetime64_any_dtype("datetime64")
assert is_datetime64_any_dtype("datetime64[ns]")
assert is_datetime64_any_dtype(ts)
assert is_datetime64_any_dtype(tsa)
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert not is_datetime64tz_dtype("datetime64")
assert not is_datetime64tz_dtype("datetime64[ns]")
assert not is_datetime64tz_dtype(ts)
assert is_datetime64tz_dtype(tsa)
@pytest.mark.parametrize("tz", ["US/Eastern", "UTC"])
def test_is_datetime_dtypes_with_tz(self, tz):
dtype = f"datetime64[ns, {tz}]"
assert not is_datetime64_dtype(dtype)
msg = "is_datetime64tz_dtype is deprecated"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert is_datetime64tz_dtype(dtype)
assert is_datetime64_ns_dtype(dtype)
assert is_datetime64_any_dtype(dtype)
def test_is_timedelta(self):
assert is_timedelta64_dtype("timedelta64")
assert is_timedelta64_dtype("timedelta64[ns]")
assert not is_timedelta64_ns_dtype("timedelta64")
assert is_timedelta64_ns_dtype("timedelta64[ns]")
tdi = TimedeltaIndex([1e14, 2e14], dtype="timedelta64[ns]")
assert is_timedelta64_dtype(tdi)
assert is_timedelta64_ns_dtype(tdi)
assert is_timedelta64_ns_dtype(tdi.astype("timedelta64[ns]"))
assert not is_timedelta64_ns_dtype(Index([], dtype=np.float64))
assert not is_timedelta64_ns_dtype(Index([], dtype=np.int64))
class TestIsScalar:
def test_is_scalar_builtin_scalars(self):
assert is_scalar(None)
assert is_scalar(True)
assert is_scalar(False)
assert is_scalar(Fraction())
assert is_scalar(0.0)
assert is_scalar(1)
assert is_scalar(complex(2))
assert is_scalar(float("NaN"))
assert is_scalar(np.nan)
assert is_scalar("foobar")
assert is_scalar(b"foobar")
assert is_scalar(datetime(2014, 1, 1))
assert is_scalar(date(2014, 1, 1))
assert is_scalar(time(12, 0))
assert is_scalar(timedelta(hours=1))
assert is_scalar(pd.NaT)
assert is_scalar(pd.NA)
def test_is_scalar_builtin_nonscalars(self):
assert not is_scalar({})
assert not is_scalar([])
assert not is_scalar([1])
assert not is_scalar(())
assert not is_scalar((1,))
assert not is_scalar(slice(None))
assert not is_scalar(Ellipsis)
def test_is_scalar_numpy_array_scalars(self):
assert is_scalar(np.int64(1))
assert is_scalar(np.float64(1.0))
assert is_scalar(np.int32(1))
assert is_scalar(np.complex64(2))
assert is_scalar(np.object_("foobar"))
assert is_scalar(np.str_("foobar"))
assert is_scalar(np.bytes_(b"foobar"))
assert is_scalar(np.datetime64("2014-01-01"))
assert is_scalar(np.timedelta64(1, "h"))
@pytest.mark.parametrize(
"zerodim",
[
np.array(1),
np.array("foobar"),
np.array(np.datetime64("2014-01-01")),
np.array(np.timedelta64(1, "h")),
np.array(np.datetime64("NaT")),
],
)
def test_is_scalar_numpy_zerodim_arrays(self, zerodim):
assert not is_scalar(zerodim)
assert is_scalar(lib.item_from_zerodim(zerodim))
@pytest.mark.parametrize("arr", [np.array([]), np.array([[]])])
def test_is_scalar_numpy_arrays(self, arr):
assert not is_scalar(arr)
assert not is_scalar(MockNumpyLikeArray(arr))
def test_is_scalar_pandas_scalars(self):
assert is_scalar(Timestamp("2014-01-01"))
assert is_scalar(Timedelta(hours=1))
assert is_scalar(Period("2014-01-01"))
assert is_scalar(Interval(left=0, right=1))
assert is_scalar(DateOffset(days=1))
assert is_scalar(pd.offsets.Minute(3))
def test_is_scalar_pandas_containers(self):
assert not is_scalar(Series(dtype=object))
assert not is_scalar(Series([1]))
assert not is_scalar(DataFrame())
assert not is_scalar(DataFrame([[1]]))
assert not is_scalar(Index([]))
assert not is_scalar(Index([1]))
assert not is_scalar(Categorical([]))
assert not is_scalar(DatetimeIndex([])._data)
assert not is_scalar(TimedeltaIndex([])._data)
assert not is_scalar(DatetimeIndex([])._data.to_period("D"))
assert not is_scalar(pd.array([1, 2, 3]))
def test_is_scalar_number(self):
# Number() is not recognied by PyNumber_Check, so by extension
# is not recognized by is_scalar, but instances of non-abstract
# subclasses are.
class Numeric(Number):
def __init__(self, value) -> None:
self.value = value
def __int__(self) -> int:
return self.value
num = Numeric(1)
assert is_scalar(num)
@pytest.mark.parametrize("unit", ["ms", "us", "ns"])
def test_datetimeindex_from_empty_datetime64_array(unit):
idx = DatetimeIndex(np.array([], dtype=f"datetime64[{unit}]"))
assert len(idx) == 0
def test_nan_to_nat_conversions():
df = DataFrame(
{"A": np.asarray(range(10), dtype="float64"), "B": Timestamp("20010101")}
)
df.iloc[3:6, :] = np.nan
result = df.loc[4, "B"]
assert result is pd.NaT
s = df["B"].copy()
s[8:9] = np.nan
assert s[8] is pd.NaT
@pytest.mark.filterwarnings("ignore::PendingDeprecationWarning")
def test_is_scipy_sparse(spmatrix):
pytest.importorskip("scipy")
assert is_scipy_sparse(spmatrix([[0, 1]]))
assert not is_scipy_sparse(np.array([1]))
def test_ensure_int32():
values = np.arange(10, dtype=np.int32)
result = ensure_int32(values)
assert result.dtype == np.int32
values = np.arange(10, dtype=np.int64)
result = ensure_int32(values)
assert result.dtype == np.int32
@pytest.mark.parametrize(
"right,result",
[
(0, np.uint8),
(-1, np.int16),
(300, np.uint16),
# For floats, we just upcast directly to float64 instead of trying to
# find a smaller floating dtype
(300.0, np.uint16), # for integer floats, we convert them to ints
(300.1, np.float64),
(np.int16(300), np.int16 if np_version_gt2 else np.uint16),
],
)
def test_find_result_type_uint_int(right, result):
left_dtype = np.dtype("uint8")
assert find_result_type(left_dtype, right) == result
@pytest.mark.parametrize(
"right,result",
[
(0, np.int8),
(-1, np.int8),
(300, np.int16),
# For floats, we just upcast directly to float64 instead of trying to
# find a smaller floating dtype
(300.0, np.int16), # for integer floats, we convert them to ints
(300.1, np.float64),
(np.int16(300), np.int16),
],
)
def test_find_result_type_int_int(right, result):
left_dtype = np.dtype("int8")
assert find_result_type(left_dtype, right) == result
@pytest.mark.parametrize(
"right,result",
[
(300.0, np.float64),
(np.float32(300), np.float32),
],
)
def test_find_result_type_floats(right, result):
left_dtype = np.dtype("float16")
assert find_result_type(left_dtype, right) == result
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists