Sindbad~EG File Manager

Current Path : /proc/2233733/root/usr/local/lib/python3.12/site-packages/pandas/tests/extension/json/
Upload File :
Current File : //proc/2233733/root/usr/local/lib/python3.12/site-packages/pandas/tests/extension/json/test_json.py

import collections
import operator
import sys

import numpy as np
import pytest

import pandas as pd
import pandas._testing as tm
from pandas.tests.extension import base
from pandas.tests.extension.json.array import (
    JSONArray,
    JSONDtype,
    make_data,
)

# We intentionally don't run base.BaseSetitemTests because pandas'
# internals has trouble setting sequences of values into scalar positions.
unhashable = pytest.mark.xfail(reason="Unhashable")


@pytest.fixture
def dtype():
    return JSONDtype()


@pytest.fixture
def data():
    """Length-100 PeriodArray for semantics test."""
    data = make_data()

    # Why the while loop? NumPy is unable to construct an ndarray from
    # equal-length ndarrays. Many of our operations involve coercing the
    # EA to an ndarray of objects. To avoid random test failures, we ensure
    # that our data is coercible to an ndarray. Several tests deal with only
    # the first two elements, so that's what we'll check.

    while len(data[0]) == len(data[1]):
        data = make_data()

    return JSONArray(data)


@pytest.fixture
def data_missing():
    """Length 2 array with [NA, Valid]"""
    return JSONArray([{}, {"a": 10}])


@pytest.fixture
def data_for_sorting():
    return JSONArray([{"b": 1}, {"c": 4}, {"a": 2, "c": 3}])


@pytest.fixture
def data_missing_for_sorting():
    return JSONArray([{"b": 1}, {}, {"a": 4}])


@pytest.fixture
def na_cmp():
    return operator.eq


@pytest.fixture
def data_for_grouping():
    return JSONArray(
        [
            {"b": 1},
            {"b": 1},
            {},
            {},
            {"a": 0, "c": 2},
            {"a": 0, "c": 2},
            {"b": 1},
            {"c": 2},
        ]
    )


class TestJSONArray(base.ExtensionTests):
    @pytest.mark.xfail(
        reason="comparison method not implemented for JSONArray (GH-37867)"
    )
    def test_contains(self, data):
        # GH-37867
        super().test_contains(data)

    @pytest.mark.xfail(reason="not implemented constructor from dtype")
    def test_from_dtype(self, data):
        # construct from our dtype & string dtype
        super().test_from_dtype(data)

    @pytest.mark.xfail(reason="RecursionError, GH-33900")
    def test_series_constructor_no_data_with_index(self, dtype, na_value):
        # RecursionError: maximum recursion depth exceeded in comparison
        rec_limit = sys.getrecursionlimit()
        try:
            # Limit to avoid stack overflow on Windows CI
            sys.setrecursionlimit(100)
            super().test_series_constructor_no_data_with_index(dtype, na_value)
        finally:
            sys.setrecursionlimit(rec_limit)

    @pytest.mark.xfail(reason="RecursionError, GH-33900")
    def test_series_constructor_scalar_na_with_index(self, dtype, na_value):
        # RecursionError: maximum recursion depth exceeded in comparison
        rec_limit = sys.getrecursionlimit()
        try:
            # Limit to avoid stack overflow on Windows CI
            sys.setrecursionlimit(100)
            super().test_series_constructor_scalar_na_with_index(dtype, na_value)
        finally:
            sys.setrecursionlimit(rec_limit)

    @pytest.mark.xfail(reason="collection as scalar, GH-33901")
    def test_series_constructor_scalar_with_index(self, data, dtype):
        # TypeError: All values must be of type <class 'collections.abc.Mapping'>
        rec_limit = sys.getrecursionlimit()
        try:
            # Limit to avoid stack overflow on Windows CI
            sys.setrecursionlimit(100)
            super().test_series_constructor_scalar_with_index(data, dtype)
        finally:
            sys.setrecursionlimit(rec_limit)

    @pytest.mark.xfail(reason="Different definitions of NA")
    def test_stack(self):
        """
        The test does .astype(object).stack(future_stack=True). If we happen to have
        any missing values in `data`, then we'll end up with different
        rows since we consider `{}` NA, but `.astype(object)` doesn't.
        """
        super().test_stack()

    @pytest.mark.xfail(reason="dict for NA")
    def test_unstack(self, data, index):
        # The base test has NaN for the expected NA value.
        # this matches otherwise
        return super().test_unstack(data, index)

    @pytest.mark.xfail(reason="Setting a dict as a scalar")
    def test_fillna_series(self):
        """We treat dictionaries as a mapping in fillna, not a scalar."""
        super().test_fillna_series()

    @pytest.mark.xfail(reason="Setting a dict as a scalar")
    def test_fillna_frame(self):
        """We treat dictionaries as a mapping in fillna, not a scalar."""
        super().test_fillna_frame()

    @pytest.mark.parametrize(
        "limit_area, input_ilocs, expected_ilocs",
        [
            ("outside", [1, 0, 0, 0, 1], [1, 0, 0, 0, 1]),
            ("outside", [1, 0, 1, 0, 1], [1, 0, 1, 0, 1]),
            ("outside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 1]),
            ("outside", [0, 1, 0, 1, 0], [0, 1, 0, 1, 1]),
            ("inside", [1, 0, 0, 0, 1], [1, 1, 1, 1, 1]),
            ("inside", [1, 0, 1, 0, 1], [1, 1, 1, 1, 1]),
            ("inside", [0, 1, 1, 1, 0], [0, 1, 1, 1, 0]),
            ("inside", [0, 1, 0, 1, 0], [0, 1, 1, 1, 0]),
        ],
    )
    def test_ffill_limit_area(
        self, data_missing, limit_area, input_ilocs, expected_ilocs
    ):
        # GH#56616
        msg = "JSONArray does not implement limit_area"
        with pytest.raises(NotImplementedError, match=msg):
            super().test_ffill_limit_area(
                data_missing, limit_area, input_ilocs, expected_ilocs
            )

    @unhashable
    def test_value_counts(self, all_data, dropna):
        super().test_value_counts(all_data, dropna)

    @unhashable
    def test_value_counts_with_normalize(self, data):
        super().test_value_counts_with_normalize(data)

    @unhashable
    def test_sort_values_frame(self):
        # TODO (EA.factorize): see if _values_for_factorize allows this.
        super().test_sort_values_frame()

    @pytest.mark.parametrize("ascending", [True, False])
    def test_sort_values(self, data_for_sorting, ascending, sort_by_key):
        super().test_sort_values(data_for_sorting, ascending, sort_by_key)

    @pytest.mark.parametrize("ascending", [True, False])
    def test_sort_values_missing(
        self, data_missing_for_sorting, ascending, sort_by_key
    ):
        super().test_sort_values_missing(
            data_missing_for_sorting, ascending, sort_by_key
        )

    @pytest.mark.xfail(reason="combine for JSONArray not supported")
    def test_combine_le(self, data_repeated):
        super().test_combine_le(data_repeated)

    @pytest.mark.xfail(
        reason="combine for JSONArray not supported - "
        "may pass depending on random data",
        strict=False,
        raises=AssertionError,
    )
    def test_combine_first(self, data):
        super().test_combine_first(data)

    @pytest.mark.xfail(reason="broadcasting error")
    def test_where_series(self, data, na_value):
        # Fails with
        # *** ValueError: operands could not be broadcast together
        # with shapes (4,) (4,) (0,)
        super().test_where_series(data, na_value)

    @pytest.mark.xfail(reason="Can't compare dicts.")
    def test_searchsorted(self, data_for_sorting):
        super().test_searchsorted(data_for_sorting)

    @pytest.mark.xfail(reason="Can't compare dicts.")
    def test_equals(self, data, na_value, as_series):
        super().test_equals(data, na_value, as_series)

    @pytest.mark.skip("fill-value is interpreted as a dict of values")
    def test_fillna_copy_frame(self, data_missing):
        super().test_fillna_copy_frame(data_missing)

    def test_equals_same_data_different_object(
        self, data, using_copy_on_write, request
    ):
        if using_copy_on_write:
            mark = pytest.mark.xfail(reason="Fails with CoW")
            request.applymarker(mark)
        super().test_equals_same_data_different_object(data)

    @pytest.mark.xfail(reason="failing on np.array(self, dtype=str)")
    def test_astype_str(self):
        """This currently fails in NumPy on np.array(self, dtype=str) with

        *** ValueError: setting an array element with a sequence
        """
        super().test_astype_str()

    @unhashable
    def test_groupby_extension_transform(self):
        """
        This currently fails in Series.name.setter, since the
        name must be hashable, but the value is a dictionary.
        I think this is what we want, i.e. `.name` should be the original
        values, and not the values for factorization.
        """
        super().test_groupby_extension_transform()

    @unhashable
    def test_groupby_extension_apply(self):
        """
        This fails in Index._do_unique_check with

        >   hash(val)
        E   TypeError: unhashable type: 'UserDict' with

        I suspect that once we support Index[ExtensionArray],
        we'll be able to dispatch unique.
        """
        super().test_groupby_extension_apply()

    @unhashable
    def test_groupby_extension_agg(self):
        """
        This fails when we get to tm.assert_series_equal when left.index
        contains dictionaries, which are not hashable.
        """
        super().test_groupby_extension_agg()

    @unhashable
    def test_groupby_extension_no_sort(self):
        """
        This fails when we get to tm.assert_series_equal when left.index
        contains dictionaries, which are not hashable.
        """
        super().test_groupby_extension_no_sort()

    def test_arith_frame_with_scalar(self, data, all_arithmetic_operators, request):
        if len(data[0]) != 1:
            mark = pytest.mark.xfail(reason="raises in coercing to Series")
            request.applymarker(mark)
        super().test_arith_frame_with_scalar(data, all_arithmetic_operators)

    def test_compare_array(self, data, comparison_op, request):
        if comparison_op.__name__ in ["eq", "ne"]:
            mark = pytest.mark.xfail(reason="Comparison methods not implemented")
            request.applymarker(mark)
        super().test_compare_array(data, comparison_op)

    @pytest.mark.xfail(reason="ValueError: Must have equal len keys and value")
    def test_setitem_loc_scalar_mixed(self, data):
        super().test_setitem_loc_scalar_mixed(data)

    @pytest.mark.xfail(reason="ValueError: Must have equal len keys and value")
    def test_setitem_loc_scalar_multiple_homogoneous(self, data):
        super().test_setitem_loc_scalar_multiple_homogoneous(data)

    @pytest.mark.xfail(reason="ValueError: Must have equal len keys and value")
    def test_setitem_iloc_scalar_mixed(self, data):
        super().test_setitem_iloc_scalar_mixed(data)

    @pytest.mark.xfail(reason="ValueError: Must have equal len keys and value")
    def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
        super().test_setitem_iloc_scalar_multiple_homogoneous(data)

    @pytest.mark.parametrize(
        "mask",
        [
            np.array([True, True, True, False, False]),
            pd.array([True, True, True, False, False], dtype="boolean"),
            pd.array([True, True, True, pd.NA, pd.NA], dtype="boolean"),
        ],
        ids=["numpy-array", "boolean-array", "boolean-array-na"],
    )
    def test_setitem_mask(self, data, mask, box_in_series, request):
        if box_in_series:
            mark = pytest.mark.xfail(
                reason="cannot set using a list-like indexer with a different length"
            )
            request.applymarker(mark)
        elif not isinstance(mask, np.ndarray):
            mark = pytest.mark.xfail(reason="Issues unwanted DeprecationWarning")
            request.applymarker(mark)
        super().test_setitem_mask(data, mask, box_in_series)

    def test_setitem_mask_raises(self, data, box_in_series, request):
        if not box_in_series:
            mark = pytest.mark.xfail(reason="Fails to raise")
            request.applymarker(mark)

        super().test_setitem_mask_raises(data, box_in_series)

    @pytest.mark.xfail(
        reason="cannot set using a list-like indexer with a different length"
    )
    def test_setitem_mask_boolean_array_with_na(self, data, box_in_series):
        super().test_setitem_mask_boolean_array_with_na(data, box_in_series)

    @pytest.mark.parametrize(
        "idx",
        [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
        ids=["list", "integer-array", "numpy-array"],
    )
    def test_setitem_integer_array(self, data, idx, box_in_series, request):
        if box_in_series:
            mark = pytest.mark.xfail(
                reason="cannot set using a list-like indexer with a different length"
            )
            request.applymarker(mark)
        super().test_setitem_integer_array(data, idx, box_in_series)

    @pytest.mark.xfail(reason="list indices must be integers or slices, not NAType")
    @pytest.mark.parametrize(
        "idx, box_in_series",
        [
            ([0, 1, 2, pd.NA], False),
            pytest.param(
                [0, 1, 2, pd.NA], True, marks=pytest.mark.xfail(reason="GH-31948")
            ),
            (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
            (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
        ],
        ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
    )
    def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
        super().test_setitem_integer_with_missing_raises(data, idx, box_in_series)

    @pytest.mark.xfail(reason="Fails to raise")
    def test_setitem_scalar_key_sequence_raise(self, data):
        super().test_setitem_scalar_key_sequence_raise(data)

    def test_setitem_with_expansion_dataframe_column(self, data, full_indexer, request):
        if "full_slice" in request.node.name:
            mark = pytest.mark.xfail(reason="slice is not iterable")
            request.applymarker(mark)
        super().test_setitem_with_expansion_dataframe_column(data, full_indexer)

    @pytest.mark.xfail(reason="slice is not iterable")
    def test_setitem_frame_2d_values(self, data):
        super().test_setitem_frame_2d_values(data)

    @pytest.mark.xfail(
        reason="cannot set using a list-like indexer with a different length"
    )
    @pytest.mark.parametrize("setter", ["loc", None])
    def test_setitem_mask_broadcast(self, data, setter):
        super().test_setitem_mask_broadcast(data, setter)

    @pytest.mark.xfail(
        reason="cannot set using a slice indexer with a different length"
    )
    def test_setitem_slice(self, data, box_in_series):
        super().test_setitem_slice(data, box_in_series)

    @pytest.mark.xfail(reason="slice object is not iterable")
    def test_setitem_loc_iloc_slice(self, data):
        super().test_setitem_loc_iloc_slice(data)

    @pytest.mark.xfail(reason="slice object is not iterable")
    def test_setitem_slice_mismatch_length_raises(self, data):
        super().test_setitem_slice_mismatch_length_raises(data)

    @pytest.mark.xfail(reason="slice object is not iterable")
    def test_setitem_slice_array(self, data):
        super().test_setitem_slice_array(data)

    @pytest.mark.xfail(reason="Fail to raise")
    def test_setitem_invalid(self, data, invalid_scalar):
        super().test_setitem_invalid(data, invalid_scalar)

    @pytest.mark.xfail(reason="only integer scalar arrays can be converted")
    def test_setitem_2d_values(self, data):
        super().test_setitem_2d_values(data)

    @pytest.mark.xfail(reason="data type 'json' not understood")
    @pytest.mark.parametrize("engine", ["c", "python"])
    def test_EA_types(self, engine, data, request):
        super().test_EA_types(engine, data, request)


def custom_assert_series_equal(left, right, *args, **kwargs):
    # NumPy doesn't handle an array of equal-length UserDicts.
    # The default assert_series_equal eventually does a
    # Series.values, which raises. We work around it by
    # converting the UserDicts to dicts.
    if left.dtype.name == "json":
        assert left.dtype == right.dtype
        left = pd.Series(
            JSONArray(left.values.astype(object)), index=left.index, name=left.name
        )
        right = pd.Series(
            JSONArray(right.values.astype(object)),
            index=right.index,
            name=right.name,
        )
    tm.assert_series_equal(left, right, *args, **kwargs)


def custom_assert_frame_equal(left, right, *args, **kwargs):
    obj_type = kwargs.get("obj", "DataFrame")
    tm.assert_index_equal(
        left.columns,
        right.columns,
        exact=kwargs.get("check_column_type", "equiv"),
        check_names=kwargs.get("check_names", True),
        check_exact=kwargs.get("check_exact", False),
        check_categorical=kwargs.get("check_categorical", True),
        obj=f"{obj_type}.columns",
    )

    jsons = (left.dtypes == "json").index

    for col in jsons:
        custom_assert_series_equal(left[col], right[col], *args, **kwargs)

    left = left.drop(columns=jsons)
    right = right.drop(columns=jsons)
    tm.assert_frame_equal(left, right, *args, **kwargs)


def test_custom_asserts():
    # This would always trigger the KeyError from trying to put
    # an array of equal-length UserDicts inside an ndarray.
    data = JSONArray(
        [
            collections.UserDict({"a": 1}),
            collections.UserDict({"b": 2}),
            collections.UserDict({"c": 3}),
        ]
    )
    a = pd.Series(data)
    custom_assert_series_equal(a, a)
    custom_assert_frame_equal(a.to_frame(), a.to_frame())

    b = pd.Series(data.take([0, 0, 1]))
    msg = r"Series are different"
    with pytest.raises(AssertionError, match=msg):
        custom_assert_series_equal(a, b)

    with pytest.raises(AssertionError, match=msg):
        custom_assert_frame_equal(a.to_frame(), b.to_frame())

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists