Sindbad~EG File Manager

Current Path : /proc/2233733/root/usr/local/lib/python3.12/site-packages/pandas/tests/extension/list/
Upload File :
Current File : //proc/2233733/root/usr/local/lib/python3.12/site-packages/pandas/tests/extension/list/array.py

"""
Test extension array for storing nested data in a pandas container.

The ListArray stores an ndarray of lists.
"""
from __future__ import annotations

import numbers
import string
from typing import TYPE_CHECKING

import numpy as np

from pandas.core.dtypes.base import ExtensionDtype

import pandas as pd
from pandas.api.types import (
    is_object_dtype,
    is_string_dtype,
)
from pandas.core.arrays import ExtensionArray

if TYPE_CHECKING:
    from pandas._typing import type_t


class ListDtype(ExtensionDtype):
    type = list
    name = "list"
    na_value = np.nan

    @classmethod
    def construct_array_type(cls) -> type_t[ListArray]:
        """
        Return the array type associated with this dtype.

        Returns
        -------
        type
        """
        return ListArray


class ListArray(ExtensionArray):
    dtype = ListDtype()
    __array_priority__ = 1000

    def __init__(self, values, dtype=None, copy=False) -> None:
        if not isinstance(values, np.ndarray):
            raise TypeError("Need to pass a numpy array as values")
        for val in values:
            if not isinstance(val, self.dtype.type) and not pd.isna(val):
                raise TypeError("All values must be of type " + str(self.dtype.type))
        self.data = values

    @classmethod
    def _from_sequence(cls, scalars, *, dtype=None, copy=False):
        data = np.empty(len(scalars), dtype=object)
        data[:] = scalars
        return cls(data)

    def __getitem__(self, item):
        if isinstance(item, numbers.Integral):
            return self.data[item]
        else:
            # slice, list-like, mask
            return type(self)(self.data[item])

    def __len__(self) -> int:
        return len(self.data)

    def isna(self):
        return np.array(
            [not isinstance(x, list) and np.isnan(x) for x in self.data], dtype=bool
        )

    def take(self, indexer, allow_fill=False, fill_value=None):
        # re-implement here, since NumPy has trouble setting
        # sized objects like UserDicts into scalar slots of
        # an ndarary.
        indexer = np.asarray(indexer)
        msg = (
            "Index is out of bounds or cannot do a "
            "non-empty take from an empty array."
        )

        if allow_fill:
            if fill_value is None:
                fill_value = self.dtype.na_value
            # bounds check
            if (indexer < -1).any():
                raise ValueError
            try:
                output = [
                    self.data[loc] if loc != -1 else fill_value for loc in indexer
                ]
            except IndexError as err:
                raise IndexError(msg) from err
        else:
            try:
                output = [self.data[loc] for loc in indexer]
            except IndexError as err:
                raise IndexError(msg) from err

        return self._from_sequence(output)

    def copy(self):
        return type(self)(self.data[:])

    def astype(self, dtype, copy=True):
        if isinstance(dtype, type(self.dtype)) and dtype == self.dtype:
            if copy:
                return self.copy()
            return self
        elif is_string_dtype(dtype) and not is_object_dtype(dtype):
            # numpy has problems with astype(str) for nested elements
            return np.array([str(x) for x in self.data], dtype=dtype)
        elif not copy:
            return np.asarray(self.data, dtype=dtype)
        else:
            return np.array(self.data, dtype=dtype, copy=copy)

    @classmethod
    def _concat_same_type(cls, to_concat):
        data = np.concatenate([x.data for x in to_concat])
        return cls(data)


def make_data():
    # TODO: Use a regular dict. See _NDFrameIndexer._setitem_with_indexer
    rng = np.random.default_rng(2)
    data = np.empty(100, dtype=object)
    data[:] = [
        [rng.choice(list(string.ascii_letters)) for _ in range(rng.integers(0, 10))]
        for _ in range(100)
    ]
    return data

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists