Sindbad~EG File Manager

Current Path : /proc/2233733/root/usr/local/lib/python3.12/site-packages/pandas/tests/series/methods/
Upload File :
Current File : //proc/2233733/root/usr/local/lib/python3.12/site-packages/pandas/tests/series/methods/test_rank.py

from itertools import chain
import operator

import numpy as np
import pytest

from pandas._libs.algos import (
    Infinity,
    NegInfinity,
)
import pandas.util._test_decorators as td

from pandas import (
    NA,
    NaT,
    Series,
    Timestamp,
    date_range,
)
import pandas._testing as tm
from pandas.api.types import CategoricalDtype


@pytest.fixture
def ser():
    return Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])


@pytest.fixture(
    params=[
        ["average", np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5])],
        ["min", np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5])],
        ["max", np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6])],
        ["first", np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6])],
        ["dense", np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])],
    ]
)
def results(request):
    return request.param


@pytest.fixture(
    params=[
        "object",
        "float64",
        "int64",
        "Float64",
        "Int64",
        pytest.param("float64[pyarrow]", marks=td.skip_if_no("pyarrow")),
        pytest.param("int64[pyarrow]", marks=td.skip_if_no("pyarrow")),
    ]
)
def dtype(request):
    return request.param


class TestSeriesRank:
    def test_rank(self, datetime_series):
        sp_stats = pytest.importorskip("scipy.stats")

        datetime_series[::2] = np.nan
        datetime_series[:10:3] = 4.0

        ranks = datetime_series.rank()
        oranks = datetime_series.astype("O").rank()

        tm.assert_series_equal(ranks, oranks)

        mask = np.isnan(datetime_series)
        filled = datetime_series.fillna(np.inf)

        # rankdata returns a ndarray
        exp = Series(sp_stats.rankdata(filled), index=filled.index, name="ts")
        exp[mask] = np.nan

        tm.assert_series_equal(ranks, exp)

        iseries = Series(np.arange(5).repeat(2))

        iranks = iseries.rank()
        exp = iseries.astype(float).rank()
        tm.assert_series_equal(iranks, exp)
        iseries = Series(np.arange(5)) + 1.0
        exp = iseries / 5.0
        iranks = iseries.rank(pct=True)

        tm.assert_series_equal(iranks, exp)

        iseries = Series(np.repeat(1, 100))
        exp = Series(np.repeat(0.505, 100))
        iranks = iseries.rank(pct=True)
        tm.assert_series_equal(iranks, exp)

        # Explicit cast to float to avoid implicit cast when setting nan
        iseries = iseries.astype("float")
        iseries[1] = np.nan
        exp = Series(np.repeat(50.0 / 99.0, 100))
        exp[1] = np.nan
        iranks = iseries.rank(pct=True)
        tm.assert_series_equal(iranks, exp)

        iseries = Series(np.arange(5)) + 1.0
        iseries[4] = np.nan
        exp = iseries / 4.0
        iranks = iseries.rank(pct=True)
        tm.assert_series_equal(iranks, exp)

        iseries = Series(np.repeat(np.nan, 100))
        exp = iseries.copy()
        iranks = iseries.rank(pct=True)
        tm.assert_series_equal(iranks, exp)

        # Explicit cast to float to avoid implicit cast when setting nan
        iseries = Series(np.arange(5), dtype="float") + 1
        iseries[4] = np.nan
        exp = iseries / 4.0
        iranks = iseries.rank(pct=True)
        tm.assert_series_equal(iranks, exp)

        rng = date_range("1/1/1990", periods=5)
        # Explicit cast to float to avoid implicit cast when setting nan
        iseries = Series(np.arange(5), rng, dtype="float") + 1
        iseries.iloc[4] = np.nan
        exp = iseries / 4.0
        iranks = iseries.rank(pct=True)
        tm.assert_series_equal(iranks, exp)

        iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20 + 1e-30, 1e-1])
        exp = Series([2, 1, 3, 5, 4, 6.0])
        iranks = iseries.rank()
        tm.assert_series_equal(iranks, exp)

        # GH 5968
        iseries = Series(["3 day", "1 day 10m", "-2 day", NaT], dtype="m8[ns]")
        exp = Series([3, 2, 1, np.nan])
        iranks = iseries.rank()
        tm.assert_series_equal(iranks, exp)

        values = np.array(
            [-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40],
            dtype="float64",
        )
        random_order = np.random.default_rng(2).permutation(len(values))
        iseries = Series(values[random_order])
        exp = Series(random_order + 1.0, dtype="float64")
        iranks = iseries.rank()
        tm.assert_series_equal(iranks, exp)

    def test_rank_categorical(self):
        # GH issue #15420 rank incorrectly orders ordered categories

        # Test ascending/descending ranking for ordered categoricals
        exp = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
        exp_desc = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
        ordered = Series(
            ["first", "second", "third", "fourth", "fifth", "sixth"]
        ).astype(
            CategoricalDtype(
                categories=["first", "second", "third", "fourth", "fifth", "sixth"],
                ordered=True,
            )
        )
        tm.assert_series_equal(ordered.rank(), exp)
        tm.assert_series_equal(ordered.rank(ascending=False), exp_desc)

        # Unordered categoricals should be ranked as objects
        unordered = Series(
            ["first", "second", "third", "fourth", "fifth", "sixth"]
        ).astype(
            CategoricalDtype(
                categories=["first", "second", "third", "fourth", "fifth", "sixth"],
                ordered=False,
            )
        )
        exp_unordered = Series([2.0, 4.0, 6.0, 3.0, 1.0, 5.0])
        res = unordered.rank()
        tm.assert_series_equal(res, exp_unordered)

        unordered1 = Series([1, 2, 3, 4, 5, 6]).astype(
            CategoricalDtype([1, 2, 3, 4, 5, 6], False)
        )
        exp_unordered1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
        res1 = unordered1.rank()
        tm.assert_series_equal(res1, exp_unordered1)

        # Test na_option for rank data
        na_ser = Series(
            ["first", "second", "third", "fourth", "fifth", "sixth", np.nan]
        ).astype(
            CategoricalDtype(
                ["first", "second", "third", "fourth", "fifth", "sixth", "seventh"],
                True,
            )
        )

        exp_top = Series([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.0])
        exp_bot = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
        exp_keep = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, np.nan])

        tm.assert_series_equal(na_ser.rank(na_option="top"), exp_top)
        tm.assert_series_equal(na_ser.rank(na_option="bottom"), exp_bot)
        tm.assert_series_equal(na_ser.rank(na_option="keep"), exp_keep)

        # Test na_option for rank data with ascending False
        exp_top = Series([7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
        exp_bot = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 7.0])
        exp_keep = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, np.nan])

        tm.assert_series_equal(na_ser.rank(na_option="top", ascending=False), exp_top)
        tm.assert_series_equal(
            na_ser.rank(na_option="bottom", ascending=False), exp_bot
        )
        tm.assert_series_equal(na_ser.rank(na_option="keep", ascending=False), exp_keep)

        # Test invalid values for na_option
        msg = "na_option must be one of 'keep', 'top', or 'bottom'"

        with pytest.raises(ValueError, match=msg):
            na_ser.rank(na_option="bad", ascending=False)

        # invalid type
        with pytest.raises(ValueError, match=msg):
            na_ser.rank(na_option=True, ascending=False)

        # Test with pct=True
        na_ser = Series(["first", "second", "third", "fourth", np.nan]).astype(
            CategoricalDtype(["first", "second", "third", "fourth"], True)
        )
        exp_top = Series([0.4, 0.6, 0.8, 1.0, 0.2])
        exp_bot = Series([0.2, 0.4, 0.6, 0.8, 1.0])
        exp_keep = Series([0.25, 0.5, 0.75, 1.0, np.nan])

        tm.assert_series_equal(na_ser.rank(na_option="top", pct=True), exp_top)
        tm.assert_series_equal(na_ser.rank(na_option="bottom", pct=True), exp_bot)
        tm.assert_series_equal(na_ser.rank(na_option="keep", pct=True), exp_keep)

    def test_rank_signature(self):
        s = Series([0, 1])
        s.rank(method="average")
        msg = "No axis named average for object type Series"
        with pytest.raises(ValueError, match=msg):
            s.rank("average")

    @pytest.mark.parametrize("dtype", [None, object])
    def test_rank_tie_methods(self, ser, results, dtype):
        method, exp = results
        ser = ser if dtype is None else ser.astype(dtype)
        result = ser.rank(method=method)
        tm.assert_series_equal(result, Series(exp))

    @pytest.mark.parametrize("ascending", [True, False])
    @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"])
    @pytest.mark.parametrize("na_option", ["top", "bottom", "keep"])
    @pytest.mark.parametrize(
        "dtype, na_value, pos_inf, neg_inf",
        [
            ("object", None, Infinity(), NegInfinity()),
            ("float64", np.nan, np.inf, -np.inf),
            ("Float64", NA, np.inf, -np.inf),
            pytest.param(
                "float64[pyarrow]",
                NA,
                np.inf,
                -np.inf,
                marks=td.skip_if_no("pyarrow"),
            ),
        ],
    )
    def test_rank_tie_methods_on_infs_nans(
        self, method, na_option, ascending, dtype, na_value, pos_inf, neg_inf
    ):
        pytest.importorskip("scipy")
        if dtype == "float64[pyarrow]":
            if method == "average":
                exp_dtype = "float64[pyarrow]"
            else:
                exp_dtype = "uint64[pyarrow]"
        else:
            exp_dtype = "float64"

        chunk = 3
        in_arr = [neg_inf] * chunk + [na_value] * chunk + [pos_inf] * chunk
        iseries = Series(in_arr, dtype=dtype)
        exp_ranks = {
            "average": ([2, 2, 2], [5, 5, 5], [8, 8, 8]),
            "min": ([1, 1, 1], [4, 4, 4], [7, 7, 7]),
            "max": ([3, 3, 3], [6, 6, 6], [9, 9, 9]),
            "first": ([1, 2, 3], [4, 5, 6], [7, 8, 9]),
            "dense": ([1, 1, 1], [2, 2, 2], [3, 3, 3]),
        }
        ranks = exp_ranks[method]
        if na_option == "top":
            order = [ranks[1], ranks[0], ranks[2]]
        elif na_option == "bottom":
            order = [ranks[0], ranks[2], ranks[1]]
        else:
            order = [ranks[0], [np.nan] * chunk, ranks[1]]
        expected = order if ascending else order[::-1]
        expected = list(chain.from_iterable(expected))
        result = iseries.rank(method=method, na_option=na_option, ascending=ascending)
        tm.assert_series_equal(result, Series(expected, dtype=exp_dtype))

    def test_rank_desc_mix_nans_infs(self):
        # GH 19538
        # check descending ranking when mix nans and infs
        iseries = Series([1, np.nan, np.inf, -np.inf, 25])
        result = iseries.rank(ascending=False)
        exp = Series([3, np.nan, 1, 4, 2], dtype="float64")
        tm.assert_series_equal(result, exp)

    @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"])
    @pytest.mark.parametrize(
        "op, value",
        [
            [operator.add, 0],
            [operator.add, 1e6],
            [operator.mul, 1e-6],
        ],
    )
    def test_rank_methods_series(self, method, op, value):
        sp_stats = pytest.importorskip("scipy.stats")

        xs = np.random.default_rng(2).standard_normal(9)
        xs = np.concatenate([xs[i:] for i in range(0, 9, 2)])  # add duplicates
        np.random.default_rng(2).shuffle(xs)

        index = [chr(ord("a") + i) for i in range(len(xs))]
        vals = op(xs, value)
        ts = Series(vals, index=index)
        result = ts.rank(method=method)
        sprank = sp_stats.rankdata(vals, method if method != "first" else "ordinal")
        expected = Series(sprank, index=index).astype("float64")
        tm.assert_series_equal(result, expected)

    @pytest.mark.parametrize(
        "ser, exp",
        [
            ([1], [1]),
            ([2], [1]),
            ([0], [1]),
            ([2, 2], [1, 1]),
            ([1, 2, 3], [1, 2, 3]),
            ([4, 2, 1], [3, 2, 1]),
            ([1, 1, 5, 5, 3], [1, 1, 3, 3, 2]),
            ([-5, -4, -3, -2, -1], [1, 2, 3, 4, 5]),
        ],
    )
    def test_rank_dense_method(self, dtype, ser, exp):
        s = Series(ser).astype(dtype)
        result = s.rank(method="dense")
        expected = Series(exp).astype(result.dtype)
        tm.assert_series_equal(result, expected)

    def test_rank_descending(self, ser, results, dtype):
        method, _ = results
        if "i" in dtype:
            s = ser.dropna()
        else:
            s = ser.astype(dtype)

        res = s.rank(ascending=False)
        expected = (s.max() - s).rank()
        tm.assert_series_equal(res, expected)

        expected = (s.max() - s).rank(method=method)
        res2 = s.rank(method=method, ascending=False)
        tm.assert_series_equal(res2, expected)

    def test_rank_int(self, ser, results):
        method, exp = results
        s = ser.dropna().astype("i8")

        result = s.rank(method=method)
        expected = Series(exp).dropna()
        expected.index = result.index
        tm.assert_series_equal(result, expected)

    def test_rank_object_bug(self):
        # GH 13445

        # smoke tests
        Series([np.nan] * 32).astype(object).rank(ascending=True)
        Series([np.nan] * 32).astype(object).rank(ascending=False)

    def test_rank_modify_inplace(self):
        # GH 18521
        # Check rank does not mutate series
        s = Series([Timestamp("2017-01-05 10:20:27.569000"), NaT])
        expected = s.copy()

        s.rank()
        result = s
        tm.assert_series_equal(result, expected)

    def test_rank_ea_small_values(self):
        # GH#52471
        ser = Series(
            [5.4954145e29, -9.791984e-21, 9.3715776e-26, NA, 1.8790257e-28],
            dtype="Float64",
        )
        result = ser.rank(method="min")
        expected = Series([4, 1, 3, np.nan, 2])
        tm.assert_series_equal(result, expected)


# GH15630, pct should be on 100% basis when method='dense'


@pytest.mark.parametrize(
    "ser, exp",
    [
        ([1], [1.0]),
        ([1, 2], [1.0 / 2, 2.0 / 2]),
        ([2, 2], [1.0, 1.0]),
        ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
        ([1, 2, 2], [1.0 / 2, 2.0 / 2, 2.0 / 2]),
        ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
        ([1, 1, 5, 5, 3], [1.0 / 3, 1.0 / 3, 3.0 / 3, 3.0 / 3, 2.0 / 3]),
        ([1, 1, 3, 3, 5, 5], [1.0 / 3, 1.0 / 3, 2.0 / 3, 2.0 / 3, 3.0 / 3, 3.0 / 3]),
        ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
    ],
)
def test_rank_dense_pct(dtype, ser, exp):
    s = Series(ser).astype(dtype)
    result = s.rank(method="dense", pct=True)
    expected = Series(exp).astype(result.dtype)
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
    "ser, exp",
    [
        ([1], [1.0]),
        ([1, 2], [1.0 / 2, 2.0 / 2]),
        ([2, 2], [1.0 / 2, 1.0 / 2]),
        ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
        ([1, 2, 2], [1.0 / 3, 2.0 / 3, 2.0 / 3]),
        ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
        ([1, 1, 5, 5, 3], [1.0 / 5, 1.0 / 5, 4.0 / 5, 4.0 / 5, 3.0 / 5]),
        ([1, 1, 3, 3, 5, 5], [1.0 / 6, 1.0 / 6, 3.0 / 6, 3.0 / 6, 5.0 / 6, 5.0 / 6]),
        ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
    ],
)
def test_rank_min_pct(dtype, ser, exp):
    s = Series(ser).astype(dtype)
    result = s.rank(method="min", pct=True)
    expected = Series(exp).astype(result.dtype)
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
    "ser, exp",
    [
        ([1], [1.0]),
        ([1, 2], [1.0 / 2, 2.0 / 2]),
        ([2, 2], [1.0, 1.0]),
        ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
        ([1, 2, 2], [1.0 / 3, 3.0 / 3, 3.0 / 3]),
        ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
        ([1, 1, 5, 5, 3], [2.0 / 5, 2.0 / 5, 5.0 / 5, 5.0 / 5, 3.0 / 5]),
        ([1, 1, 3, 3, 5, 5], [2.0 / 6, 2.0 / 6, 4.0 / 6, 4.0 / 6, 6.0 / 6, 6.0 / 6]),
        ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
    ],
)
def test_rank_max_pct(dtype, ser, exp):
    s = Series(ser).astype(dtype)
    result = s.rank(method="max", pct=True)
    expected = Series(exp).astype(result.dtype)
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
    "ser, exp",
    [
        ([1], [1.0]),
        ([1, 2], [1.0 / 2, 2.0 / 2]),
        ([2, 2], [1.5 / 2, 1.5 / 2]),
        ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
        ([1, 2, 2], [1.0 / 3, 2.5 / 3, 2.5 / 3]),
        ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
        ([1, 1, 5, 5, 3], [1.5 / 5, 1.5 / 5, 4.5 / 5, 4.5 / 5, 3.0 / 5]),
        ([1, 1, 3, 3, 5, 5], [1.5 / 6, 1.5 / 6, 3.5 / 6, 3.5 / 6, 5.5 / 6, 5.5 / 6]),
        ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
    ],
)
def test_rank_average_pct(dtype, ser, exp):
    s = Series(ser).astype(dtype)
    result = s.rank(method="average", pct=True)
    expected = Series(exp).astype(result.dtype)
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
    "ser, exp",
    [
        ([1], [1.0]),
        ([1, 2], [1.0 / 2, 2.0 / 2]),
        ([2, 2], [1.0 / 2, 2.0 / 2.0]),
        ([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
        ([1, 2, 2], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
        ([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
        ([1, 1, 5, 5, 3], [1.0 / 5, 2.0 / 5, 4.0 / 5, 5.0 / 5, 3.0 / 5]),
        ([1, 1, 3, 3, 5, 5], [1.0 / 6, 2.0 / 6, 3.0 / 6, 4.0 / 6, 5.0 / 6, 6.0 / 6]),
        ([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
    ],
)
def test_rank_first_pct(dtype, ser, exp):
    s = Series(ser).astype(dtype)
    result = s.rank(method="first", pct=True)
    expected = Series(exp).astype(result.dtype)
    tm.assert_series_equal(result, expected)


@pytest.mark.single_cpu
def test_pct_max_many_rows():
    # GH 18271
    s = Series(np.arange(2**24 + 1))
    result = s.rank(pct=True).max()
    assert result == 1

Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists