Sindbad~EG File Manager
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
)
import numpy as np
from pandas._libs import lib
from pandas.errors import LossySetitemError
from pandas.core.dtypes.cast import np_can_hold_element
from pandas.core.dtypes.common import is_numeric_dtype
if TYPE_CHECKING:
from pandas._typing import (
ArrayLike,
npt,
)
def to_numpy_dtype_inference(
arr: ArrayLike, dtype: npt.DTypeLike | None, na_value, hasna: bool
) -> tuple[npt.DTypeLike, Any]:
if dtype is None and is_numeric_dtype(arr.dtype):
dtype_given = False
if hasna:
if arr.dtype.kind == "b":
dtype = np.dtype(np.object_)
else:
if arr.dtype.kind in "iu":
dtype = np.dtype(np.float64)
else:
dtype = arr.dtype.numpy_dtype # type: ignore[union-attr]
if na_value is lib.no_default:
na_value = np.nan
else:
dtype = arr.dtype.numpy_dtype # type: ignore[union-attr]
elif dtype is not None:
dtype = np.dtype(dtype)
dtype_given = True
else:
dtype_given = True
if na_value is lib.no_default:
if dtype is None or not hasna:
na_value = arr.dtype.na_value
elif dtype.kind == "f": # type: ignore[union-attr]
na_value = np.nan
elif dtype.kind == "M": # type: ignore[union-attr]
na_value = np.datetime64("nat")
elif dtype.kind == "m": # type: ignore[union-attr]
na_value = np.timedelta64("nat")
else:
na_value = arr.dtype.na_value
if not dtype_given and hasna:
try:
np_can_hold_element(dtype, na_value) # type: ignore[arg-type]
except LossySetitemError:
dtype = np.dtype(np.object_)
return dtype, na_value
Sindbad File Manager Version 1.0, Coded By Sindbad EG ~ The Terrorists